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Overview 
• Many instruments have been developed to detect radiation 
• Based on knowledge of how radiation interacts with matter 

– Excitation 
– Ionization 

• Charged particles cause ionization directly through Coulombic interactions 
• EM radiation produces ion pairs in matter 

– Photoelectric effect 
– Compton scattering 
– Pair production 

• Neutrons produce ions through secondary mechanisms 
• Four methods for detecting ionizing radiation: 

– Ions collected to produce signal 
– Amplification of ionization to produce stronger signal 
– Fluorescence of a substance that has absorbed energy from radiation 
– Radiation-induced chemical reactions 

 
• Three major types of detection instruments: 

– Nuclear instrumentation 
– Portable survey instruments and area monitors 
– Personnel monitoring devices 

 
Gas-Filled Detectors 

• Detect incident radiation by measurement of two ionization processes 
– Primary process: ions produced directly by radiation effects 
– Secondary process: additional ions produced from or by effects of primary ions 

• Townsend Avalanche 
 
• Primary and secondary ions produced within the gas are separated by Coulombic effects and 

collected by charged electrodes in the detector 
– Anode (positively charged electrode) 

• Collects the negative ions 
– Cathode (negatively charged electrode) 

• Collects the positive ions 
 

Gas-Filled Detector: Components 
• Cylindrical gas chamber 

– Air 
– P-10 gas mixture (10% methane, 90% argon) 
– Helium 
– Neon 

• Anode (+): Wire at center of chamber 
• Cathode (-): Chamber walls 
• Operating Principles 

– Voltage applied across electrodes 
– Incident radiation (α, β, or γ) enters chamber and ionizes the fill-gas 
– Ions (+/-) separate and migrate to respective electrodes 
– Current output is generated and scaled to radiation level 



 
 
• Voltage too low 

– Ions may recombine and neutralize each other prior to reaching electrodes 
• Proper operating voltage 

– All primary ion pairs are collected 
• Voltage too high 

– Chamber becomes flooded with ions due to secondary ionizations caused by high-energy 
primary ions 

– Output current is no longer proportional to number of primary ionizations 
– Radiation events no longer measured 

• Ionization “avalanche” propagated by input voltage itself 
 
• Recombination Region 

– Applied voltage too low 
– Recombination occurs 
– Low electric field strength 

 
• Ionization Chamber Region 
 (aka Saturation Region) 

– Voltage high enough to prevent recombination 
• All primary ion pairs collected on electrodes 

– Voltage low enough to prevent secondary ionizations 
– Voltage in this range called saturation voltage 
– As voltage increases while incident radiation level remains constant, output current 

remains constant (saturation current) 
 
• Proportional Region 

– Gas amplification (or multiplication) occurs 
• Increased voltage increases primary ion energy levels 
• Secondary ionizations occur 
• Add to total collected charge on electrodes 

– Increased output current is related to # of primary ionizations via the proportionality 
constant 

 (aka gas multiplication factor) 
• Function of detector geometry, fill-gas properties, and radiation properties 

 
• Limited Proportional Region 
• Collected charge becomes independent of # of primary ionizations 
• Secondary ionization progresses to photoionization (photoelectric effect) 
• Proportionality constant no longer accurate 
• Not very useful range for radiation detection 
 
• Geiger-Mueller (GM) Region 

– Any radiation event strong enough to produce primary ions results in complete ionization 
of gas 

– After an initial ionizing event, detector is left insensitive for a period of time (dead time) 
• Freed primary negative ions (mostly electrons) reach anode faster than heavy positive 

ions can reach cathode 



• Photoionization causes the anode to be completely surrounded by cloud of secondary 
positive ions 

• Cloud “shields” anode so that no secondary negative ions can be collected 
• Detector is effectively "shut off" 
• Detector recovers after positive ions migrate to cathode 

– Dead time limits the number of radiation events that can be detected 
• Usually 100 to 500 µs 

 
• Continuous Discharge Region 

– Electric field strength so intense that no initial radiation event is required to completely 
ionize the gas 

– Electric field itself propagates secondary ionization 
– Complete avalanching occurs 
– No practical detection of radiation is possible. 

 
Gas-Filled Detectors 
• Most commonly used detection instrument due to versatility 

– Can detect and discern between all types of radiation over entire energy spectrum 
– Cylindrical shape provides the strongest electric field and output current for a given 

operating voltage 
• Most common detectors operate in the ionization chamber, proportional, and Geiger-Mueller 

regions 
• No detectors operate solely in the recombination, limited proportional, or continuous 

discharge regions. 
 
• Can discriminate between α, β, and γ radiation 

– Pulse height discrimination: electronically filter out pulses below or above expected height 
for radiation type of interest 

• Less sensitive over long range than GM 
• Include: 

– Portable neutron radiation survey meters 
– Personnel contamination monitoring 

 
• Include: 

– Area radiation monitors 
– Portable high-range radiation survey meters (Teletector)  

 
Advantages 
• highly sensitive: capable of detecting low intensity radiation fields 
• Only simple electronic amplification of the detector signal is required 
• less insulation required to decrease “noise” interference  
 
• Some GM detectors detect γ only 

– Solid casing 
• Some detect α, β, and γ 

–  α, β radiation: short travel range 
• Cannot penetrate detector casing 

– Mylar window to allow α and β radiation to enter 



–  α and β can be separately detected by using different window types and thicknesses to 
filter incident radiation 

– Shield must be placed over window to detect γ 
• Blocks α and β 

 
Scintillation Detectors 
• Detect radiation by induction of luminescence 

– Absorption of energy by a substance with the subsequent emission of visible radiation 
(photons) 

 
• Incident radiation interacts with the scintillator material 
• Excites electrons in material 
• Electromagnetic radiation emitted in the visible light range 
 
• Common scintillator materials 

– Anthracene crystals 
– Sodium iodide crystals 
– Lithium iodide crystals 
– Zinc sulfide powder 
– Lithium iodide, boron, and cadmium 
 can be used to detect neutrons 

 
6 Steps of Scintillation Detection 

• Inside scintillator: 
– Excitation due to absorption of radiation 
– Emission of light photons from de-excitation 
– Transit of light to photocathode inside photomultiplier tube 

• Inside photomultiplier tube: 
– Production of photoelectrons in photocathode 
– Multiplication of photoelectrons 

• Outside scintillator and photomultiplier tube: 
– Conversion of electronic detector output to useful information 

Common Scintillator Materials 
• Anthracene crystals 
• Sodium iodide crystals 
• Lithium iodide crystals 
• Zinc sulfide powder 
• Lithium iodide, boron, and cadmium can be used to detect neutrons 
 
Photocathode 
• Light-sensitive material that absorbs photons and emits photoelectrons 
• Common material: Antimony-Cesium 
• Emits about one electron for every 10 photons absorbed 
 
Photomultiplier Tube: Dynodes 
• Photoelectrons strike successive dynodes and are multiplied (secondary electron production) 
• Amplifies the output signal 
• If tube has 10 dynodes, total gain would be around 106 



• Typical tubes made with 6 to 14 dynodes 
 
Semiconductor Detectors 
• Operation similar to gas-filled detectors, but chamber filled with solid semiconductor material 
• Crystalline material whose electrical conductivity is intermediate between that of a good 

conductor and a good insulator 
• Benefits compared to other types 

– Very little fluctuation in output for a given energy of radiation 
– Fast 

• Energy transfer from radiation to semiconductor target produces a freed electron and an 
electron vacancy, or hole 

• Electrons travel to the anode 
• Hole “travels” toward the negative electrode 

– Not physically 
– Successive exchanges of electrons between neighboring molecules in the crystalline 

lattice 
 
Semiconductor Detectors: Pros/Cons 
• Pros 

– Fast response time 
• Due to high mobility of electrons and holes 
• Takes longer for ions to physically travel through space in a gas-filled detector 

– Less statistical fluctuations for any given radiation energy 
• A smaller amount of energy required to produce electron-hole pair in a semiconductor 

than an ion pair in a gas 
• For a given energy, 8 to 10 times as many charge-carrying pairs are produced in 

semiconductors as in gases 
– Total charge collected varies linearly with radiation energy 

 
• Cons 

– Very sensitive to heat: must be cooled to eliminate error 
– Photomultiplier output very weak 

• Powerful amplifiers needed in the external circuit 
 
Detection Systems 
• Two main components: 

– Detector 
• Gas-filled, scintillation, or semiconductor 

– Measuring apparatus 
• Converts signal output from detector to usable information for the operator 

• Detection system categories, by output type: 
– Pulse-type output 
– Mean-level output 

• Detection system categories, by application: 
– Nuclear instrumentation 
– Portable survey instruments and area monitors 
– Personal dosimetry 

 
• Pulse-Type Output: 



– records a series of individual signals (pulses) separated or “resolved” over time 
– each pulse represents a separate radiation event within the detector 
– “Frisker”-type survey instruments found near any contaminated area access point 

 
Nuclear Instrumentation (NI) 
• NI detectors are used to measure/record neutron (η) flux as a measure of reactor power level 
• Range of η flux is wide, spanning from:  

• Shutdown 
• Reactor start-up 
• 100% power 

• To accurately monitor η population at all power levels, there are three overlapping detector 
ranges 
– Source range: (100 – 106) 
– Intermediate range: (101 – 1010) 
– Power range: (1010 – 1012) 

 
NI Detector Ranges 

Neutron Energy Ranges 
• Fast neutrons have an energy > 1 eV 
• Slow neutrons have an energy less than or equal 0.4 eV. 
• Hot neutrons have an energy of about 0.2 eV. 
• Thermal neutrons have an energy of about 0.025 eV. 
• Cold neutrons have an energy from 5x10−5 eV to 0.025 eV. 
 

NI:  Fission-Chamber Detectors 
• Neutron detection in source and intermediate ranges 
• Gas-filled ionization-type detector 
• Inner “cans” coated with U-235 lining 
• Fast neutrons exiting the core are thermalized by the time they make their way inside the F-C 

detector 
– Interact with materials outside the core 
– Interact with the plastic covering of the detector 

• Thermal neutrons lead to fission of  the U-235 lining inside the detector 
• Reactor core neutron flux is then measured as a product of the fission of U-235 in the F-C 

detector 
 

Fission-Chamber Output Signal 
• Pulse height discrimination implemented in order to pass only the signal portion due to 

neutron effects 
• Pulse discriminator bias: the selective value for pulses 
• Products of incident thermal neutrons: fission fragments with average energy of 165 MeV 
• Energy of alphas from uranium isotope decay: 4 MeV 
• Fission gammas: no more than 7 MeV 
• The fission fragment energy due to neutron entering the detector is clearly distinct 

– Pulse is much larger than those for non-fission reactions within detector 
 
Pulse Height Discrimination 



NI: Power vs. Intermediate Range 
• Any power level: reactor produces both neutron and gamma fluxes 
• In intermediate range, exact correlation between gamma and neutron flux is not easily 

predictable 
• For an ion chamber to read power in the intermediate range, it must be compensated 

– Electronically cancel out gamma effects 
 
• In power range, gamma flux becomes insignificant compared to neutron flux 
• Gamma compensation no longer necessary 
 

NI: Uncompensated Ion Chambers 
• Monitor reactor power in the power range 

– Single boron-lined cylindrical chamber operating in the ionization chamber region 
– Mean-level output 
– Gamma-induced current typically represents only 1% of total output signal 

 
NI: Incore Instrumentation 

• Monitor power production at select locations within the core 
• Verify reactor core design parameters: flux mapping 
• Data only– no operational plant control 
• Simpler version of fission chamber 

– Approx 0.2” diameter, 2.1” length 
– Uses uranium oxide clad in stainless steel, with helium fill gas 

 
NI Detector Circuitry 
• A channel consists of a detector, its measuring apparatus (transducer), and a display 

– Sends signals to the reactor control and protective systems 
• At main control panel, reactor core is monitored by 

– Two source range channels 
– Two intermediate range channels 
– Four power range channels (0 to 120% power) 

• Third source range channel with dual displays 
– Nuclear instrument cabinet 
– Control room evacuation panel 

 
• Main control panel: U-235-based FC detector 
• Instrument cabinet: Boron Triflouride (BF3) FC detector 
• Both are dual-element (dual-can) detectors 

– Provides increased sensitivity in the low η fluxes of the source range 
• Pulse height discriminators “screen out” γ flux from η 
 
• Each FC is powered by a high voltage power supply 
• Each FC output is amplified and filtered by a separate preamplifier 

– Filter electronic noise due to cable lengths 
• Preamplifier outputs from 2 FCs are summed at the channel’s discriminator 

– Non-neutron pulses are filtered out 
– Signal is further processed and amplified for use as indication of power level 

 



Nuclear Instrumentation: Intermediate Range 
• Spans the source (100 – 106) and power (1010 – 1012) ranges 
• One U-235 fission chamber (can) per detector 
• Output signal 

– Pulse-type in the source range 
– Mean-level in the power range 

 
Nuclear Instrumentation: Intermediate Range 
• “Pulse pile-up” 

– When passing source and power ranges in either direction, neutron events occur and 
change so rapidly that less overall sensitivity is needed 

– Gamma flux is not predictably related to neutron flux 
– Cannot be “filtered” by pulse height discrimination 
– Intermediate range neutron flux levels are several orders of magnitude higher than source 
– Pile-up occurs at upper end of detector range due to high magnitude of combined γ and η 

flux 
– The predictable pulses from the lower end effectively change from an AC signal to a 

fluctuating DC signal 
 
• Campbell Theorem 

– “With a random occurrence, the variations in the occurrence is proportional to the square 
root of the random rate." 

– Simply put: by taking the mean value of the oscillations in detector output appearing at the 
upper-end of the detector scale, a meaningful detector signal is obtained 

 
• Monitored by four independent channels 
• Each channel uses a long, boron-lined uncompensated ion chamber 
• Each chamber includes two separate neutron detecting sections 
• Gammas are so out-numbered by the neutrons that gamma-compensation is not necessary 
 
• One high voltage supply (0-1500 VDC per channel) powers both sections of detector 
• Output current from each section is fed to an amplifier 
• Amplifier output sent to 

– Protection and control systems 
– Control panel readouts 
– Summing amplifier 

• Add signals from separate detector sections and amplify to make combined signal 
proportional to total core power (0 to 120%) 

• Summing amplifier output sent to 
– Protection and control systems 
– Control panel readouts 

• Gammas are so out-numbered by the neutrons that gamma-compensation is not necessary 
 
Power Range Detector Channel Portable Survey Instruments and Area 

Monitors 
• Survey meters 



– Compact detector systems used to monitor an area for neutrons, beta, alpha, or gamma 
radiation 

 
• Portable Instruments 

– Survey meter, powered by batteries 
– Can be carried to any remote location 

 
• Area Monitors 

– Survey instruments in permanent installation 
 
Portable Survey Instruments and Area Monitors 

 Considerations: 
• Reduction of size and weight 

– Gas-filled detector produces the most intense output for the lowest applied voltage 
– To reduce the size and weight 

• Reduce battery size: balance between weight and battery life 
• Reducing chamber size: erratic readings, useless 

– A bulky, reliable instrument is preferred to a small one that yields erratic results 
• Type, energy, and intensity of the radiation field 

– Low range beta and gamma survey meters 
– High range beta and gamma survey meters 
– Alpha survey meters 
– Neutron survey meters 

 
Low Range β and γ Survey Meters 
• Low range: fields ranging from background level to levels of a few hundred milliroentgens per 

hour 
• Most used: Geiger-Mueller tube 
• Also used: Scintillation detectors 
 
Low Range β and γ Survey Meters 
• G-M tube: Advantages 

– Variety of sizes and shapes 
– Inexpensive 
– The slightest radiation event strong enough to cause primary ionization results in ionization 

of the entire gas volume 
– Thus detector is highly sensitive, even in lowest intensity radiation fields 
– Only simple electronic amplification of the detector signal is required 

• Hardware lasts longer 
• Requires less power 

– Strong output signal means G-M needs less electrical noise insulation than other detectors 
 
Low Range β and γ Survey Meters 
• G-M tube: Disadvantages 

– Incapable of discerning between type and energy of the radiation event 
– Only counts events and yields output in events per unit time or dose rate 
– A beta particle or gamma ray, high or low energy, represents one event counted 
– Only capable of detecting fields to some upper limit of intensity 

• Limited to lower intensity fields due to detector dead time 



 
• Most common G-M gases: noble gases 

– Helium 
– Argon 
– Neon 
– Sometimes hydrogen and nitrogen 
– Characteristics of gas affect dead time 

 
• After primary ionization, avalanche, and output pulse, G-M detector enters phase called tube 

recovery 
– Positive ions slowly migrate to cathode 
– Neutralized upon arrival 
– Neutralization may result in production of additional electrons and/or photoelectrons 
– Can result in another discharge of the tube, effectively lengthening dead time 

 
• Quenching 

– Process used to prevent multiple G-M tube discharges 
– Methods 
– Electronic circuitry external to detector (inefficient) 
– Quench gases added to the gas volume 

• Self-quenching, efficient 
• Common type:  ethyl alcohol, bromine or chlorine 
• Quench gas molecules neutralize positive ions in fill-gas before they can reach cathode 
• Charged quench gas molecules are then neutralized by cathode 
• Dampens potential for secondary discharge 

 
• G-M tube requires high input voltage 

– Permits strong signal from ion collection 
– Frequent replacement of high voltage batteries 

 
• Detecting beta particles with G-M 

– Particles have short range: window required 
– Mica, mylar, or thin stainless steel 
– Based on window material and thickness, correction factors can be determined to help 

narrow output to reflect beta activity alone 
 
High Range β and γ Survey Meters 
• Most: Uncompensated ion chambers 

– Very simple compared to G-M 
– Pulse or mean-level output 
– Strength of output signal is directly proportional to the # of ion pairs collected 
– Correlates in turn to a function of radiation energy 
– Signal converted to dose rate 

• Can detect wide range of field intensities, but… 
• Disadvantages of Ion Chambers 

– Output signal weak 
– Must be amplified considerably 



– Battery power limitations 
– Electronic noise-- frequent zeroing (taring) might be required  
– Signal-to-noise ratio renders ion chamber inefficient at low range compared to G-M 

• Ion chambers 
– Insulation must be very good 
– Fill gas 

• Air at atmospheric pressure 
• Noble gases 

– For beta, ion chamber must be equipped with a thin wall or window 
 
Alpha Survey Instruments 
• A 1.0 MeV alpha particle has a range in air of only ~0.6 cm compared to 330 cm range of 

beta particles of the same energy in air 
• Alpha particle ranges are considerably shorter in denser materials 
• Detectors commonly used: 

– Ion chambers 
• Small field intensities 
• Very thin window must be incorporated 

– Scintillation detectors 
• Very effective 

• Scintillation detectors (continued) 
– Commonly sodium iodide (NaI), cesium iodide (CsI), or silver-activated zinc sulfide also  
– Activator materials 

• Desirable “impurities” in scintillator material 
• Capture electrons and holes created through ionization of the scintillator and to emit the 

light photons upon returning to ground state 
• Examples 

– Silver in zinc sulfide 
– Thallium in sodium and cesium iodides 

 
Neutron Survey Instruments 
• Neutrons alone do not produce ionization (a detectable signal) 
• The detector must contain a material with which the neutron interacts to produce ions 
• Most common target material: Boron 

– Either as a fill gas or a coating on the inner wall 
• Survey meters used for neutron detectors 

– Gas-filled 
– Semiconductor 
– Scintillation 

• Common setup for gas-filled portable neutron survey meter 
– BF3 proportional counter surrounded by a cadmium loaded, polyethylene sphere 

• Sphere thermalizes incoming fast neutrons so they can be detected 
– Meter output can read directly in millirem or rem per hour 

 
• Ion chambers as neutron survey instruments 

– As with NI, commonly use boron-10 coating 



– Must be compensated for gamma 
• Scintillation detectors as neutron survey instruments 

– Common material: lithium iodide 
– Thermal neutrons interact with lithium to form tritium and an alpha particle 
– Alpha particle causes measurable ionization 

 
Portable Radiation Survey Instruments 
• Pre-operational checks: 

– Battery-check: battery strength should be well within the acceptance range 
– Calibration check: a sticker affixed to the side of the instrument notes the “calibration due 

date” 
– Visual inspection: inspect for no visible signs of damage (i.e. loose, or missing parts; 

damaged detector; cracked meter face, etc.) 
– Source check: expose the detector to the “check source” [either internal or external] and 

note the meter response. It shall respond within the set “acceptance range” 
 
• Pre-operational checks: 

– Zero-check: adjust so that the meter reads zero (0) when unexposed to a source 
– Light-check: applicable to a  scintillation detector, the meter should read zero (0) when no 

source is present. Spurious counts are indicative of a damaged detector (i.e. light is 
leaking into the detector) 

 
Pocket Ion-Chamber Dosimeter 
• Self-reading 
• Records dose in either milliroentgen (mR) or Roentgen (R) 
• Sensitive to gamma only 
• DC voltage applied to quartz fibers inside the chamber 
• As gamma interactions/ionizations occur within the chamber, and the ions are collected, the 

coulombic repulsion is decreased, and the fibers move closer together 
• Extremely sensitive to shock 
• Located in Emergency Kits 
 
Electronic Dosimeter 
• Activated using the Electronic Dosimeter reader 
• Self-reading, digital display of accumulated dose and dose rate 
• Records accumulated dose and “highest dose rate field” in milliroentgen (mR) and 

milliroentgen per hour (mR/hr), respectively (can be set to record in units of Roentgen) 
• Visual and audible alarms for accumulated dose and dose rate 
• Silicon diode detector to detect gamma radiation (sensitive to gamma only) 
• Resistant to shock 
• Downloads dose and dose rate data to Radiation Exposure Control database when 

deactivated by the ED reader 
 
Thermoluminescent Dosimeter 
• Scintillation-type device 

– Lithium Flouride (LiF) or Calcium Flouride (CaF) 
• CaF: high efficiency for detecting gamma and “X” radiation – poor at detecting neutrons 
• LiF:  capable of detecting alpha (α), beta (β), gamma (γ),“X”  and neutron (η) radiation – 

typically used at nuclear power plants 



• As incident radiation interacts with the crystal, the resultant ionization/excitation energy is 
stored. 

 
 
• Crystal retains this energy until heat is applied. 
• The “trapped” energy is then released in the form of light, as the atoms of the crystal return to 

their “ground state” 
• The light emitted is then correlated to dose received 
• Once the TLD has been “read”, memory is cleared 
• TLD is then available for re-use 
 
 


