
3 Applications of Differential Equations

Differential equations are absolutely fundamental to modern science and engineering.
Almost all of the known laws of physics and chemistry are actually differential equa-
tions, and differential equation models are used extensively in biology to study bio-A mathematical model is a

description of a real-world system
using mathematical language and
ideas.

chemical reactions, population dynamics, organism growth, and the spread of diseases.
The most common use of differential equations in science is to model dynamical

systems, i.e. systems that change in time according to some fixed rule. For such a
system, the independent variable is t (for time) instead of x, meaning that equations
are written like

dy

dt
= t3y2 instead of y′ = x3y2.

In addition, the letter y is usually replaced by a letter that represents the variable
under consideration, e.g. M for mass, P for population, T for temperature, and so
forth.

Exponential Growth and Decay
Perhaps the most common differential equation in the sciences is the following.

THE NATURAL GROWTH EQUATION

The natural growth equation is the differential equation

dy

dt
= ky

where k is a constant. Its solutions have the form

y = y0e
kt

where y0 = y(0) is the initial value of y.

The constant k is called the rate constant or growth constant, and has units of
inverse time (number per second). The sign of k governs the behavior of the solutions:

• If k > 0, then the variable y increases exponentially over time. This is called
exponential growth.

• If k < 0, then the variable y decreases over time, approaching zero asymptotically.
This is called exponential decay.

See Figure 1 for sample graphs of y = ekt in these two cases. In the case where k is
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Figure 1: Exponential growth
and decay.

negative, the natural growth equation can also be written

dy

dt
= −ry

where r = |k| is positive, in which case the solutions have the form y = y0e
−rt.

The following examples illustrate several instances in science where exponential
growth or decay is relevant.

EXAMPLE 1 Consider a colony of bacteria in a resource-rich environment. Here
“resource-rich” means, for example, that there is plenty of food, as well as space for
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the colony to grow. In such an environment, the population P of the colony will grow,
as individual bacteria reproduce via binary fission.

Assuming that no bacteria die, the rate at which such a population grows will be
proportional to the number of bacteria. For example, the population might increase at
a rate of 5% per minute, regardless of its size. Intuitively, this is because the rate at
which individual bacterial cells divide does not depend on the number of cells.

We can express this rule as a differential equation:

dP

dt
= kP.

Here k is a constant of proportionality, which can be interpreted as the rate at which
the bacteria reproduce. For example, if k = 3/hour, it means that each individual
bacteria cell has an average of 3 offspring per hour (not counting grandchildren).

It follows that the population of bacteria will grow exponentially with time:

P = P0e
kt

where P0 is the population at time t = 0 (see Figure 2). �
t

P
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Figure 2: Exponential growth of
a bacteria population. EXAMPLE 2 Consider a sample of a certain radioactive isotope. The atoms of such

an isotope are unstable, with a certain proportion decaying each second. In particular,
the mass M of the sample will decrease as atoms are lost, with the rate of decrease
proportional to the number of atoms. We can write this as a differential equation

dM

dt
= −rM ,

where r is a constant of proportionality. It follows that the mass of the sample will
decay exponentially with time:

M = M0e
−rt,

t

M

M = M0e
-rt

M0

Figure 3: Exponential decay of a
radioactive isotope.

where M0 is the mass of the sample at time t = 0 (see Figure 2). �

One important measure of the rate of exponential decay is the half life. Given a
decaying variable

y = y0e
−rt (r > 0)

the half life is the amount of time that it takes for y to decrease to half of its original
value. The half life can be obtained by substituting y = y0/2

y0
2

= y0e
−rt

and then solving for t.
Similarly, given a growing variable

y = y0e
kt (k > 0)

we can measure the rate of exponential growth using the doubling time, i.e. the
amount of time that it takes for y to grow to twice its original value. The doubling
time can be obtained by substituting y = 2y0 and then solving for t.

The following example illustrates a more complicated situation where the natural
growth equation arises.

EXAMPLE 3 Figure 4 shows a simple kind of electric circuit known as an RC circuit.
This circuit has two components:
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• A resistor is any circuit component—such as a light bulb—that resists the flow
of electric charge. Resistors obey Ohm’s law

V = IR,

where V is the voltage applied to the resistor, I is the rate at which charge flows
through the resistor, and R is a constant called the resistance.

• A capacitor is a circuit component that stores a supply of electric charge. When

capacitor

resistor

Figure 4: An RC circuit.
it is attached to a resistor, the capacitor will push this charge through the resistor,
creating electric current. Capacitors obey the equation

V =
Q

C
,

where Q is the charge stored in the capacitor, C is a constant called the capac-
itance of the capacitor, and V is the resulting voltage.

In an RC circuit, the voltage produced by a capacitor is applied directly across a
resistor. Setting the two formulas for V equal to each other gives

IR =
Q

C
.

Moreover, the rate I at which charge flows through the resistor is the same as the rate
at which charge flows out of the capacitor, so

I = −dQ

dt
.

Putting these together gives the differential equation(
−dQ

dt

)
R =

Q

C
,

or equivalently
dQ

dt
= − 1

RC
Q.

It follows that the amount of charge held in the capacitor will decay exponentially over
time

Q = Q0e
−rt

where r = 1/(RC). In the case where the resistor is a light bulb, this means thatAlthough the light bulb will
technically never go out, in reality the
light will become too faint to see after
a short time.

the bulb will become dimmer and dimmer over time, although it will never quite go
out. �

Separation of Variables
Many differential equations in science are separable, which makes it easy to find a
solution.

EXAMPLE 4 Newton’s law of cooling is a differential equation that predicts the
cooling of a warm body placed in a cold environment. According to the law, the rate
at which the temperature of the body decreases is proportional to the difference of
temperature between the body and its environment. In symbols

dT

dt
= −k(T − Te),
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where T is the temperature of the object, Te is the (constant) temperature of the
environment, and k is a constant of proportionality.

We can solve this differential equation using separation of variables. We get∫
dT

T − Te
=

∫
−k dt,

so

ln |T − Te| = −kt + C.

Solving for T gives an equation of the form

T = Te + Ce−kt
t

T

T = Te + Ce-kt

T0

Te

Figure 5: Cooling of a warm
body.

where the value of C changed. This function decreases exponentially, but approaches Te

as t→∞ instead of zero (see Figure 5). �

EXAMPLE 5 In chemistry, the rate at which a given chemical reaction occurs is
often determined by a differential equation. For example, consider the decomposition
of nitrogen dioxide:

2 NO2 −→ 2 NO + O2.

Because this reaction requires two molecules of NO2, the rate at which the reaction
occurs is proportional to the square of the concentration of NO2. That is,We are using the usual chemistry

notation, where [NO2] denotes the
concentration of NO2. An alternative
would be to use a single letter for this
concentration, such as N .

d[NO2]

dt
= −k[NO2]2

where [NO2] is the concentration of NO2, and k is a constant.
We can solve this equation using separation of variables. We get∫

[NO2]−2d[NO2] =

∫
−k dt

so

−[NO2]−1 = −kt + C.

Solving for [NO2] gives

[NO2] =
1

kt + C
t

@NO2D

@NO2D =
1

kt + C

Figure 6: Decomposition of NO2. where the value of C changed. An example graph corresponding to this formula is
shown in Figure 6. Unlike exponential decay, the concentration decreases very quickly
at first, but then very slowly afterwards. �

EXAMPLE 6 Consider a colony of bacteria growing in an environment with limited
resources. For example, there may be a scarcity of food, or space constraints on the
size of the colony. In this case, it is not reasonable to expect the colony to grow
exponentially—indeed, the colony will unable to grow larger than some maximum
population Pmax.The maximum population Pmax is

called the carrying capacity of the
bacteria colony in the given
environment.

In this case, a common model for the growth of the colony is the logistic equation

dP

dt
= kP

(
1− P

Pmax

)
Here the factor of 1− P/Pmax is unimportant when P is small, but when P is close to
Pmax this factor decreases the rate of growth. Indeed, in the case where P = Pmax, this
factor forces dP/dt to be zero, meaning that the colony does not grow at all.
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We can solve this differential equation using separation of variables, though it is a
bit difficult. We begin by multiplying through by Pmax

Pmax

dP

dt
= kP (Pmax − P ).

We can now separate to get∫
Pmax

P (Pmax − P )
dP =

∫
k dt.

The integral on the left is difficult to evaluate. The secret is to express the fraction as
the sum of two simpler fractions:

Pmax

P (Pmax − P )
=

1

P
+

1

Pmax − P
.

This is a simple example of the
integration technique known as
partial fractions decomposition. Each of the simpler fractions can then be integrated easily. The result is

ln |P | − ln |Pmax − P | = kt + C.

We can use a logarithm rule to combine the two terms on the left:

ln

∣∣∣∣ P

Pmax − P

∣∣∣∣ = kt + C

so
P

Pmax − P
= Cekt.

Solving for P gives

P =
Pmax

1 + Ce−kt

where the value of C changed.
t

P

P =
Pmax

1 + Ce-kt

Pmax

Figure 7: Logistic population
growth.

Figure 7 shows the graph of a typical solution. Note that the population grows
quickly at first, but the rate of increase slows as the population reaches the maximum.
As t→∞, the population asymptotically approaches Pmax. �

In many of the examples we have seen, a differential equation includes an unknown
constant k. This means that the general solution will involve two unknown constants
(k and C). To solve such an equation, you will need two pieces of information, such as
the values of y(0) and y′(0), or two different values of y.

The following example illustrates this procedure.

EXAMPLE 7 An apple pie with an initial temperature of 170 ◦C is removed from
the oven and left to cool in a room with an air temperature of 20 ◦C. Given that the
temperature of the pie initially decreases at a rate of 3.0 ◦C/min, how long will it take
for the pie to cool to a temperature of 30 ◦C?

SOLUTION Assuming the pie obeys Newton’s law of cooling (see Example 4), we have
the following information:

dT

dt
= −k(T − 20), T (0) = 170, T ′(0) = −3.0,

where T is the temperature of the pie in celsius, t is the time in minutes, and k is an
unknown constant.

We can easily find the value of k by plugging the information we know about t = 0
directly into the differential equation:

−2.5 = −k(170− 20).
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Second-Order Equations

Although first-order equations are the most common type in chemistry and biology, in
physics most systems are modeled using second-order equations. This is because of Newton’s
second law:

F = ma.

The variable a on the right side of this equation is acceleration, which is the second derivative
of position. Usually the force F depends on position as well as perhaps velocity, which means
that Newton’s second law is really a second-order differential equation.

For example, consider a mass hanging from a stretched spring. The force on such a mass
is proportional to the position y, i.e.

F = −ky,

where k is a constant. Plugging this into Newton’s second law gives the equation

−ky = my′′.

The solutions to this differential equation involve sines and cosines, which is why a mass
hanging from a spring will oscillate up and down. Similar differential equations can be used
to model the motion of a pendulum, the vibrations of atoms in a covalent bond, and the
oscillations of an electric circuit made from a capacitor and an inductor.

It follows that k = 0.020/sec. Now, the general solution to the differential equation is

T = 20 + Ce−kt

and plugging in t = 0 gives
170 = 20 + C,

which means that C = 150 ◦C. Thus

T = 20 + 150e−0.02t.

To find how long it will take for the temperature to reach 30 ◦C, we plug in 30 for T

and solve for t. The result is that t = 135 minutes . �

The technique used in this example of substituting the initial conditions into the
differential equation itself is quite common. It can be used whenever the differential
equation itself involves an unknown constant, and we have information about both y(0)
and y′(0).

EXERCISES

1. A sample of an unknown radioactive isotope initially weighs
5.00 g. One year later the mass has decreased to 4.27 g.

(a) How quickly is the mass of the isotope decreasing at
that time?

(b) What is the half life of the isotope?

2. A cell culture is growing exponentially with a doubling time
of 3.00 hours. If there are 5,000 cells initially, how long will

it take for the cell culture to grow to 30,000 cells?

3. During a certain chemical reaction, the concentration of
butyl chloride (C4H9Cl) obeys the rate equation

d[C4H9Cl]

dt
= −k[C4H9Cl],

where k = 0.1223/sec. How long will it take for this reaction
to consume 90% of the initial butyl chloride?
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4. A capacitor with a capacitance of 5.0 coulombs/volt holds an
initial charge of 350 coulombs. The capacitor is attached to
a resistor with a resistance of 8.0 volt · sec/coulomb.

(a) How quickly will the charge held by the capacitor
initially decrease?

(b) How quickly will the charge be decreasing after
20 seconds?

5. A bottle of water with an initial temperature of 25 ◦C is
placed in a refrigerator with an internal temperature of 5 ◦C.
Given that the temperature of the water is 20 ◦C ten
minutes after it is placed in the refrigerator, what will the
temperature of the water be after one hour?

6. In 1974, Stephen Hawking discovered that black holes emit a
small amount of radiation, causing them to slowly evaporate
over time. According to Hawking, the mass M of a black
hole obeys the differential equation

dM

dt
= − k

M2

where k = 1.26× 1023 kg3/year.

(a) Use separation of variables to find the general solution
to this equation

(b) After a supernova, the remnant of a star collapses into a
black hole with an initial mass of 6.00× 1031 kg. How
long will it take for this black hole to evaporate
completely?

7. According to the drag equation the velocity of an object
moving through a fluid can be modeled by the equation

dv

dt
= −kv2

where k is a constant.

(a) Find the general solution to this equation.

(b) An object moving through the water has an initial
velocity of 40 m/s. Two seconds later, the velocity has

decreased to 30 m/s. What will the velocity be after ten
seconds?

8. A population of bacteria is undergoing logistic growth, with
a maximum possible population of 100,000. Initially, the
bacteria colony has 5,000 members, and the population is
increasing at a rate of 400/minute.

(a) How large will the population be 30 minutes later?

(b) When will the population reach 80,000?

9. Water is being drained from a spout in the bottom of a
cylindrical tank. According to Torricelli’s law, the
volume V of water left in the tank obeys the differential
equation

dV

dt
= −k

√
V

where k is a constant.

(a) Use separation of variables to find the general solution
to this equation

(b) Suppose the tank initially holds 30.0 L of water, which
initially drains at a rate of 1.80 L/min. How long will it
take for tank to drain completely?

10. The Gompertz equation has been used to model the
growth of malignant tumors. The equation states that

dP

dt
= kP (lnPmax − lnP )

where P is the population of cancer cells, and k and Pmax are
constants.

(a) Use separation of variables to find the general solution
to this equation.

(b) A tumor with 5000 cells is initially growing at a rate of
200 cells/day. Assuming the maximum size of the tumor
is Pmax = 100,000 cells, how large will the tumor be after
100 days?



Answers

1. (a) 0.67 g/yr (b) 4.39 years 2. 7.75 hours 3. 18.83 sec 4. (a) 8.75 coulombs/sec (b) 5.3 coulombs/sec

5. 8.6 ◦C 6. (a) M = 3√C−3kt (b) 5.71×1071 years 7. (a) v =
1

kt +C
(b) 15 m/s

8. (a) 39,697 (b) t = 51.4 min 9. (a) V =
1
4
(C− kt)2 (b) 33.3 min

10. (a) P = Pmax exp
(
Ce−kt). (b) 45,468 cells


