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CHAPTER 1

INTRODUCTION

The area of differential equations is a very broad field of study. The versa-

tility of differential equations allows the area to be applied to a variety of topics

from physics to population growth to the stock market. They are a useful tool for

modeling and studying naturally occurring phenomena such as determining when

beams may break as well as predicting future outcomes such as the spread of disease

or the changes in populations of different species over time. Anytime an unknown

phenomena is changing with respect to time or space, a differential equation is

involved.

In more general terms, a differential equation is simply an equation involving an

unknown function and its derivatives. To be more technical, a differential equation

is a “mathematical equation for an unknown function of one or several variables

that relates the values of the function itself and its derivatives of various orders”to

a particular phenomena [2]. Differential equations generally fall into two categories:

ordinary differential equations (ODE) or partial differential equations (PDE), the

distinction being that ODEs involve unknown functions of one independent variable

while PDEs involve unknown functions of more than one independent variable. In

this paper we will focus on ordinary differential equations.

Some defining characteristics of a differential equation are its order and if it is

linear. The order of the equation refers to the highest order derivative present. A
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differential equation is said to be linear if it is linear in its dependent variable and

its derivatives, i.e. in the case of an ODE, if it can be written in the form

an(x)yn + an−1(x)yn−1 + · · · + a1(x)y′ + a0(x)y = Q(x) [1].

In addition, we say that linear differential equations are homogeneous when Q(x) =

0. A very important property of homogeneous linear ordinary differential equations

says that there are n linearly independent solutions for an nth order equation and

that all solutions can be written as a linear combination of these solutions.

Initial conditions are when y and its derivatives are evaluated at a single point.

Typically an nth order ODE will have y(x0), y
′(x0), y

′′(x0), . . . , y
(n−1)(x0) given. A

differential equation together with these initial conditions is called an initial value

problem (IVP).

If y and/or its derivatives are evaluated at two different points we say that

we have a boundary condition. A boundary value problem (BVP) is a differential

equation with boundary conditions. An example of a BVP is the equation

y′′ + p(x)y′ + q(x)y = g(x)

with the boundary condition

y(α) = a, y(β) = b.

When g(x) = 0 and a = b = 0, the BVP is said to be homogeneous.

The following are examples of common differential equations. The first two

examples are IVPs and the last two are examples of IBVPs.
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Example 1.0.1. The Mass-Spring Equation. The motion of a mass on the end of

a spring can be given by

my′′ + cy′ + ky = f(t),

y(0) = a, y′(0) = b,

where y is the position of the mass from equilibrium, m is the mass, c is a damping

constant, k is the spring constant, and f(t) is an outside forcing function. Usually

y(0) and y′(0) are given and represent the initial position and velocity, respectively.

Example 1.0.2. The population of mosquitoes in a certain area increases at a rate

proportional to the current population, and, in the absence of other factors, the

population doubles each week. If there are 200,000 mosquitoes in the area initially,

and predators eat 20,000 mosquitoes each day. What is the population of mosquitoes

in the area at any time [1]?

p′(t) = r(t) − q(t),

p(0) = 200, 000,

where r(t) is the rate of growth for the population and q(t) is the death rate for the

population. The solution for this problem is

p(t) = 201, 977.31 − 1977.31et ln(2),

where t ≥ 0 is time measured in weeks.

This type of problem requires us to model a differential equation to fit the

stipulations of the growth rate of the population as well as the death rate. For
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more applied situations, such as developing a disease model, there will typically be

a system of differential equations to solve as opposed to a single ODE.

Example 1.0.3. The Heat Equation. Consider a one-dimensional bar of length L.

The transfer of heat in this bar is given by

α2uxx = ut, for 0 < x < L, t ≥ 0

with boundary conditions

u(0, t) = 0, u(L, t) = 0, for t > 0

and initial condition

u(x, 0) = f(x), for 0 ≤ x ≤ L

where u represents the heat in the bar for every x ∈ [0, L] and t ≥ 0 and f is the

initial temperature distribution [1]. It should be noted that the boundary conditions

can be interpreted as holding the temperature at the ends of the bar at zero degrees.

Example 1.0.4. The Wave Equation. The motion of a string of length L can be

described by

α2uxx = utt, for 0 < x < L, t ≥ 0

with boundary conditions

u(0, t) = 0, u(L, t) = 0, for t ≥ 0

and initial conditions
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u(x, 0) = f(x), for 0 ≤ x ≤ L

ut(x, 0) = g(x), for 0 ≤ x ≤ L,

where u represents the position of the string from equilibrium at any x ∈ [0, L] and

t ≥ 0, f is the initial position and g is the initial velocity [1]. Here the boundary

conditions represent the string being held at the equilibrium position.

This paper examines the application of boundary value problems in determining

the buckling load of an elastic column. The boundary conditions are determined by

the length of the column and how it is supported (i.e. clamped end, hinged end,

etc.). The following sections will discuss some of the theory behind these boundary

value problems, some typical problems and their solutions, and how to interpret

these results in the context of our problem.
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CHAPTER 2

DEFINITIONS AND THEOREMS

In this chapter we introduce some basic theory of IVPs and BVPs as applicable

to our area of study. For simplicity, we are considering first and second order

differential equations.

2.1 INITIAL VALUE PROBLEMS

Initial value problems, and linear problems in particular, can be separated

from boundary value problems. There is a rich literature involving linear IVPs.

The following theorem concerns the existence of solutions to IVPs.

Theorem 2.1.1. [1] Consider the initial value problem

y′′ + p(t)y′ + q(t)y = g(t),

y(t0) = a, y′(t0) = b,

where p, q, and g are continuous on an open interval I that contains the point t0.

Then there is exactly one solution y = φ(t) of this problem, and the solution exists

throughout the interval I.

In general, for nonlinear ODEs the existence of a solution will be given in some

interval which contains the initial value. The above theorem not only talks about

a solution existing but also tells us the interval in which it does exist. The next

theorem highlights another difference between linear and nonlinear problems.

6



Theorem 2.1.2. (Principle of Superposition) [1] If y1 and y2 are two solutions

of the differential equation

L[y] = y′′ + p(t)y′ + q(t)y = 0,

then the linear combination c1y1 + c2y2 is also a solution for any values of the

constants c1 and c2.

This theorem does not hold for nonlinear problems and highlights one of the

main differences between linear and nonlinear problems. It can be illustrated by

many examples in ODE books. The following definition is extremely important

when dealing with solutions to linear functions.

Definition. [1] Suppose y1 and y2 are solutions of a differential equation. We define

the Wronskian, W , as

W =

∣∣∣∣∣∣∣∣

y1 y2

y′
1 y′

2

∣∣∣∣∣∣∣∣
= y1y

′
2 − y′

1y2.

This definition along with Theorem 2.1.2 gives us the following.

Theorem 2.1.3. [1] Suppose that y1 and y2 are two solutions of the differential

equation

L[y] = y′′ + p(t)y′ + q(t)y = 0,

and that the Wronskian

W = y1y
′
2 − y′

1y2

is not zero at the point t0 where the initial conditions,
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y(t0) = a, y′(t0) = b

are assigned. Then there is a choice of the constants c1, c2 for which

y = c1y1(t) + c2y2(t)

satisfies the differential equation and its initial conditions.

It is this choice of constants that will aid in simpifying the process of solving

the problems of this paper. Finally, we have

Theorem 2.1.4. [1] If y1 and y2 are two solutions of the differential equation

L[y] = y′′ + p(t)y′ + q(t)y = 0,

and if there is a point t0 where the Wronskian of y1 and y2 is nonzero, then the

family of solutions

y = c1y1(t) + c2y2(t)

with arbitrary coefficients c1 and c2 includes every solution of the differential equa-

tion.

Notice that the last theorem deals only with a linear ODE and does not in-

volve an IVP. In particular, it is extremely important in that it tells us first, that

every second order ODE has two solutions, second, that these solutions are linearly

independent, third, that these are the only solutions to the ODE, and finally, that

all solutions can be written as a linear combination of these two solutions.
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2.2 BOUNDARY VALUE PROBLEMS

Suppose we have the differential equation

y′′ + p(x)y′ + q(x)y = 0

with boundary conditions

y(α) = a, y(β) = b.

In order to solve this BVP, we need to find a function y = ϕ such that ϕ satisfies the

differential equation on the interval α < x < β and takes on the values of a and b at

the endpoints of the interval [1]. To find ϕ, we first examine the general solution to

the ODE and then use the boundary conditions to determine if there are constants

to solve the problem.

Although the idea of finding solutions to linear IVPs and BVPs is fairly straight

forward, the results can be vastly different. As we saw in the previous section,

linear IVPs have the existence of a unique solution in an interval which is well-

defined. Boundary value problems, on the other hand, may have a unique solution,

no solution, or infinitely many solutions depending on the conditions of the problem.

Consider the problem

y′′ + y = 0,

subject to the boundary conditions

y(0) = a, y
(π

2

)
= b.

Here, one solution exists. If we change the BC to

y(0) = a, y(2π) = b

9



then we have no solution if a 6= b. However, if a = b we have an infinite number of

solutions.

In this sense, we may relate BVPs to systems of linear algebraic equations.

Consider the linear system

Ax = b

where A is an n × n matrix, x is an n × 1 vector to be determined, and b is a

given n × 1 vector. The solution to the system is dependent on the matrix A. If A

is nonsingular, the system will have a unique solution. On the other hand, if A is

singular, the system may have no solution or an infinite number of solutions. In the

case of the homogeneous linear system

Ax = 0,

the trivial solution x= 0 always exists. Moreover, if A is nonsingular, the trivial

solution is the only solution. However, if A is singular, there are infinitely many

non-trivial solutions. This homogeneous linear system is similar to the differential

equation

y′′ + p(x)y′ + q(x)y = 0

with boundary conditions

y(α) = 0 and y(β) = 0,

where α and β are the endpoints of our interval. Thus we need to solve



y1(α) y2(α)

y1(β) y2(β)







c1

c2


 =




0

0
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where y1 and y2 are solutions to the ODE. This corresponds exactly to the algebraic

problem mentioned above. It is important to note that, from the previous section,

we know that there are exactly two linearly independent solutions to the ODE.

We may take the relation between BVPs and linear algebraic systems further

by considering the linear system

Ax = λx.

This sytem has the solution x = 0 for all values of λ, but for certain values of λ, the

solution has non-trivial solutions. We call these values of λ eigenvalues and their

respective solutions, x, the corresponding eigenfunctions. The problem as a whole

is called an eigenvalue problem. An example of an eigenvalue problem in ODE’s

would be

y′′ + λy = 0

with boundary conditions

y(0) = 0 and y(β) = 0 [1].

The relationship between boundary value problems and systems of linear equa-

tions provides a very useful tool in determining the type of solution for a BVP as

well as solving for the constant values of the general homogeneous solution to a

linear ODE. The idea is the same as it is for an algebraic system. We want to

determine all values of λ for which the nontrivial solution y exists. We will use this

relationship between BVPs and systems of linear equations to solve the eigenvalue

problems in the next chapter.
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CHAPTER 3

APPLICATION OF BOUNDARY VALUE PROBLEMS

3.1 A SIMPLY SUPPORTED COLUMN

Consider the differential equation

y(4) + λy′′ = 0,

where the solution y = ϕ is the eigenfunction corresponding to λ. The problem is to

find, for each of the following boundary conditions, the smallest eigenvalue, which

determines the buckling load, as well as the corresponding eigenfunction, which

determines the shape of the buckled column:

Problem 1: y(0) = y′′(0) = 0, y (L) = y′′ (L) = 0, a column with both ends

hinged.

Problem 2: y (0) = y′′ (0) = 0, y (L) = y′ (L) = 0, a column where one end is

hinged and the other end is clamped.

Problem 3: y (0) = y′ (0) = 0, y (L) = y′ (L) = 0, a column where both ends are

clamped.

Solutions:

We first note that the ODE is linear and from the previous chapter we can

extend our results from second order to fourth order. Thus, this fourth order ODE

has four linearly independent solutions independent of the boundary conditions. We

12



also know that all solutions to the ODE can be written as a linear combination of

these four solutions. We will first solve this 4th order linear ODE. Notice that the

character of the solution changes for λ < 0, λ = 0, and λ > 0. When we apply

the BC’s, we will consider each case separately and require that the solution be

non-trivial in order to properly determine the buckling load and the shape of the

buckled column.

Case 1:

Suppose λ < 0. Let λ = −µ2 for µ 6= 0. Then the characteristic equation for

the ODE is

r4 − µ2r2 = 0.

Thus, the roots are r = 0, 0, µ,−µ and the homogeneous solution is

y = c1 + c2x + c3e
µx + c4e

−µx.

Case 2:

Suppose λ = 0. Then the characteristic equation is

r4 = 0

and the homogeneous solution is

y = c1 + c2x + c3x
2 + c4x

3.
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Case 3:

Suppose λ > 0. Let λ = µ2 for µ 6= 0. Then the characteristic equation is

r4 + µ2r2 = 0

and the homogeneous solution is

y = c1 + c2x + c3 cos(µx) + c4 sin(µx).

Thus, we have three possible forms for the solution to the ODE. Now let us apply

the different boundary conditions to find nontrivial solutions to the different situ-

ations. Recall that, in order for λ to be an eigenvalue, we need to find nonzero

eigenfunctions. For each of the three problems, this amounts to finding at least one

nonzero ci. This is equivalent to determining for which values of λ a matrix will be

singular.

3.1.1 Problem 1

Solve y(4) + λy′′ = 0 subject to y(0) = y′′(0) = 0, y (L) = y′′ (L) = 0.

Case 1: Let λ < 0 and λ = −µ2 for µ 6= 0. Then the homogeneous solution is

y = c1 + c2x + c3e
µx + c4e

−µx.

Applying the boundary conditions, we see that

y(0) = c1 + c3 + c4 = 0

y′′(0) = c3µ
2 + c4µ

2 = 0

y(L) = c1 + c2L + c3e
µL + c4e

−µL = 0

y′′(L) = c3µ
2eµL + c4µ

2e−µL = 0.

14



In order to determine if this case will yield nontrivial solutions, we can form a matrix

from the LHS of the boundary equations and check its determinant. Thus, we have

the matrix

A =




1 0 1 1

0 0 µ2 µ2

1 L eµL e−µL

0 0 µ2eµL µ2e−µL




and

det(A) = 2µ4L sinh(µL).

Since µ and L are nonzero, this solution will also be nonzero. Therefore, A is

nonsingular. Hence, by Section 2.2, the system and, thus, the ODE will have only

the trivial solution, y ≡ 0.

Case 2: Let λ = 0. Then the homogeneous solution is

y = c1 + c2x + c3x
2 + c4x

3.

Applying the boundary conditions yields

y(0) = c1 = 0

y′′(0) = 2c3 = 0

y(L) = c1 + c2L + c3L
2 + c4L

3 = 0

y′′(L) = 2c3 + 6c4L = 0.

15



These boundary conditions can be related to the matrix

B =




1 0 0 0

0 0 2 0

1 L L2 L3

0 0 2 6L




with determinant

det(B) = −12L2.

Thus, detB 6= 0 and so B is nonsingular. Therefore, the trivial solution is the only

solution to this case.

Case 3: Let λ > 0 with λ = µ2 for µ 6= 0. Then the homogeneous solution is

y = c1 + c2x + c3 cos(µx) + c4 sin(µx).

Applying the boundary conditions yields

y(0) = c1 + c3 = 0 (3.3a)

y′′(0) = −c3µ
2 = 0 (3.3b)

y(L) = c1 + c2L + c3 cos(µL) + c4 sin(µL) = 0 (3.3c)

y′′(L) = −c3µ
2 cos(µL) − c4µ

2 sin(µL) = 0. (3.3d)

The related matrix for these boundary conditions is

C =




1 0 1 0

0 0 −µ2 0

1 L cos µL sin(µL)

0 0 −µ2 cos(µL) µ2 sin µL
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with determinant

det(C) = µ4L sinµL.

Since we require a nontrivial solution, we want det(C) = 0. This will happen when

µL = nπ. Solving for µ gives µn = nπ
L

. To determine ϕ, we must solve for the

constants.

By solving equation (3.3b) for c3 we have c3 = 0 and so, by equation (3.3a),

we also have c1 = 0. Thus equations (3.3c) and (3.3d) are now

c2L + c4 sin(µL) = 0 (3.4)

and − c4µ
2 sin(µL) = 0. (3.5)

From above we have that µ = nπ
L

. Since, c4 6= 0, we have c2 = 0. If µn = nπ
L

then

λn =
(

nπ
L

)2
and yn = sin

(
nπx
L

)
. Recall that we want the smallest eigenvalue. Thus,

λ1 = π2

L2 is the buckling load and y1 = ϕ1 = sin
(

πx
L

)
is the shape of the buckled

column.

3.1.2 Problem 2

Solve y(4) + λy′′ = 0 subject to y(0) = y′′(0) = 0, y(L) = y′(L) = 0. As shown

previously there are three possible general solutions to the ODE to consider.

Case 1: Suppose λ < 0. Then let λ = −µ2 where µ 6= 0. Then the general

homogeneous solution is

y = c1 + c2x + c3e
µx + c4e

−µx.

17



Applying our boundary conditions, we have

y(0) = c1 + c3 + c4 = 0

y′′(0) = c3µ
2 + c4µ

2 = 0

y(L) = c1 + c2L + c3e
µL + c4e

−µL = 0

y′(L) = c2 + c3µeµL − c4µe−µL = 0.

Using a matrix to determine the type of solution to this system, we have

D =




1 0 1 1

0 0 µ2 µ2

1 L eµL e−µL

0 1 µeµL −µe−µL




which has determinant

det(D) = µ3LeµL + µ3Le−µL − µ2eµL + µ2e−µL

= µ2 (2µL cosh(µL) − 2 sinh(µL)) .

This determinant will only be zero when 2µL cosh(µL) = 2 sinh(µL) or when µL =

tanh(µL). This will only happen when µL = 0. Since neither µ nor L is zero, this

determinant is nonzero. Thus D is nonsingular and y ≡ 0 is the solution to this

ODE.

Case 2: Suppose λ = 0. Then the homogeneous solution is

y = c1 + c2x + c3x
2 + c4x

3.

18



Applying our boundary conditions yields

y(0) = c1 = 0

y′′(0) = 2c3 = 0

y(L) = c1 + c2L + c3L
2 + c4L

3 = 0

y′(L) = c2 + 2c3L + 3c4L
2 = 0.

The matrix for this system is

E =




1 0 0 0

0 0 2 0

1 L L2 L3

0 1 2L 3L2




and has determinant

det(E) = −4L3.

Since L is nonzero, the matrix is nonsingular. Therefore, the trivial solution is once

again the only solution to the ODE.

Case 3: Let λ > 0 with λ = µ2 and µ 6= 0. Then our general solution is

y = c1 + c2x + c3 cos(µx) + c4 sin(µx).

Applying the boundary condtions gives

y(0) = c1 + c3 = 0 (3.8a)

y′′(0) = −c3µ
2 = 0 (3.8b)

y(L) = c1 + c2L + c3 cos(µL) + c4 sin(µL) = 0 (3.8c)

y′(L) = c2 − c3µ sin(µL) + c4µ cos(µL) = 0. (3.8d)

19



The corresponding matrix for the boundary conditions is

F =




1 0 1 0

0 0 −µ2 0

1 L cos(µL) sin(µL)

0 1 −µ sin(µL) µ cos(µL)




and has determinant

det(F) = (µL cos(µL) − sin(µL))µ2.

Since µ 6= 0,det(F) = 0 when µL cos(µL) − sin(µL) = 0. Let γ = µL. Then solving

for γ, we need to determine when

γ = tan(γ).

This yields the solution set

{0, 4.4934, 7.7253, 54.9597, . . . }.

Since the buckling load must be a real number and we require the smallest buckling

load, we choose γ = 4.4934. Thus, µ1 = 4.4934
L

and λ1 = (4.4934)2

L2 . To find the

buckling shape, we need to determine y.

By equation (3.8b) we have c3 = 0. Then by equation (3.8a) c1 = 0 as well.

Thus, equation (3.8d) is now

c2 + c4µ cos(µL) = 0

so c2 = −c4µ cos(µL).

20



Thus, by substituting for c1, c2, and c3 our general solution is now

y = c4sin(µx) − c4µx cos(µL).

Since we have chosen the smallest buckling load, λ1, the solution to the ODE will

be the shape of the buckled column. Therefore, the nontrivial solution to the ODE

is

ϕ1 = −µ1x cos (µ1L) + sin (µ1x) .

3.1.3 Problem 3

Solve y(4) + λy′′ = 0 subject to y(0) = y′(0) = 0, y(L) = y′(L) = 0. Let us

examine the three possible general solutions.

Case 1: Let λ < 0 and λ = −µ2 for µ 6= 0. Then the homogeneous solution is

y = c1 + c2x + c3e
µx + c4e

−µx.

Applying our boundary conditions, we have

y(0) = c1 + c3 + c4 = 0

y′(0) = c2 + c3µ − c4µ = 0

y(L) = c1 + c2L + c3e
µL + c4e

−µL = 0

y′(L) = c2 + c3µeµL − c4µe−µL = 0.
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The corresponding matrix for the boundary conditions is

G =




1 0 1 1

0 1 µ −µ

1 L eµL e−µL

0 1 µeµL −µe−µL




with determinant

det(G) = −µ2LeµL + µ2Le−µL + 2µeµL + 2µe−µL − 4µ

= −2µ2L sinh(µL) + 4µ cosh(µL) − 4µ

= −2µ(µL sinh(µL) − 2 cosh(µL) + 2).

This determinant will equal zero when µL sinh(µL) − 2 cosh(µL) + 2 = 0 or when

µL = 2 cosh(µL)−2
sinh(µL)

. This will only happen if µL = 0. Therefore, by our stipulations

that µ 6= 0 and L 6= 0, we have that det(G) 6= 0. Thus, the matrix representation for

the boundary conditions is nonsingular. Therefore, only the trivial solution, y ≡ 0,

will satisfy this case.

Case 2: Suppose λ = 0. Then the general homogeneous solution is

y = c1 + c2x + c3x
2 + c4x

3.

Applying our boundary conditions yields

y(0) = c1 = 0

y′(0) = c2 = 0

y(L) = c1 + c2L + c3L
2 + c4L

3 = 0

y′(L) = c2 + 2c3L + 3c4L
2 = 0
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Then we may use the following matrix to determine the type of solution for the

ODE

H =




1 0 0 0

0 1 0 0

1 L L2 L3

0 1 2L 3L2




which has determinant

det(H) = L4.

Thus, H is nonsingular and so only the trivial solution will satisfy the general

solution.

Case 3: Suppose λ > 0 and λ = µ2 for µ 6= 0. Then we have the following

homogeneous solution

y = c1 + c2x + c3 cos(µx) + c4 sin(µx).

Applying the boundary condtions gives

y(0) = c1 + c3 = 0 (3.11a)

y′(0) = c2 + c4µ = 0 (3.11b)

y(L) = c1 + c2L + c3 cos(µL) + c4 sin(µL) = 0 (3.11c)

y′(L) = c2 − c3µ sin(µL) + c4µ cos(µL) = 0. (3.11d)
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Our corresponding matrix for the boundary conditions is

J =




1 0 1 0

0 1 0 µ

1 L cos(µL) sin(µL)

0 1 −µ sin(µL) µ cos(µL)




and has determinant

det(J) = −µ(µL sin(µL) + 2(cos(µL) − 1)).

In order for the system to have a nontrivial solution, we need det(J) = 0. This will

happen when µL sin(µL) + 2(cos(µL) − 1) = 0. Let γ = µL. Then we have the

following

−2(1 − cos(γ)) = −γ sin(γ). (3.12)

To simplify equation (3.12) we can divide by a negative and use the half-angle

formula on the LHS. Then

2(2 sin2
(γ

2

)
) = γ sin(γ)

so 4 sin2
(γ

2

)
= γ sin(γ). (3.13)

Solving equation (3.13) for γ yields the solution set

{0, 2π, 4π, 8.98682, 15.4505, 37.69911, 40.74261, . . . },

which can be verified graphically. Using the same reasoning as in Problem 2 Case

3, we must choose γ = 2π. Thus, µ1 = 2π
L

so λ1 =
(

2π
L

)2
. To solve for ϕ1 we may
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plug-in our value of µ1 to the boundary conditions and solve accordingly. Thus, we

have the system

c1 + c3 = 0 (3.14a)

c2 + c4
2π

L
= 0 (3.14b)

c1 + c2L + c3 cos(
2π

L
L) + c4 sin(

2π

L
L) = 0 (3.14c)

c2 − c3
2π

L
sin(

2π

L
L) + c4

2π

L
cos(

2π

L
L) = 0. (3.14d)

We can solve for c1 and c2 in equations (3.14a) and (3.14b), respectively, and equa-

tions (3.14c) and (3.14d) will simplify. Hence, we may rewrite the system as

c1 = −c3 (3.15a)

c2 = −c4
2π

L
(3.15b)

c1 + c2L + c3 = 0 (3.15c)

c2 + c4
2π

L
= 0. (3.15d)

From equations (3.15a) and (3.15c), we have c2L = 0 and so c2 = 0. Then by

equation (3.15b) c4 = 0. This leaves us with c1 = −c3. Substituting for c1 in the

general solution, we have

y = −c3 + c3 cos(µx).

Thus, we have ϕ1 = 1 − cos
(

2πx
L

)
by choice of c3 = −1.
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CLAMPED END, FREE END

3.1.4 Problem 4

Since the boundary conditions for this particular BVP vary according to how

a column is supported, some interesting cases will arise. When one end of a column

is fixed and the other is free, the eigenvalue parameter also appears in the boundary

conditions. In order to determine the buckling load and buckling shape for this type

of column, we must solve y(4) + λy′′ = 0 subject to the boundary conditions

y (0) = y′ (0) = 0, y′′ (L) = 0, and y′′′ (L) + λy′ (L) = 0.

We begin by looking at the case where λ < 0, λ = −µ2, and µ 6= 0. Then our

general solution is

y = c1 + c2x + c3e
µx + c4e

−µx.

Applying our boundary conditions, we have

y(0) = c1 + c3 + c4 = 0

y′(0) = c2 + c3µ − c4µ = 0

y′′(L) = c3µ
2eµL + c4µ

2e−µL = 0

y′′′(L) + λy′(L) =

µ3c3e
µL − µ3c4e

−µL − µ2[c2 + c3µeµL − c4µe−µL] = 0.
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The matrix relating to these boundary conditions is

K =




1 0 1 1

0 1 µ −µ

0 0 µ2eµL µ2e−µL

0 −µ2 0 0




with determinant

det(K) = −2µ5 cosh(µL).

Since µ 6= 0 and L > 0, det(K) 6= 0. Therefore, only the trivial solution will satisfy

the system of equations for the boundary conditions and, thus, the BVP.

Case 2: Let λ = 0. Then the homogeneous solution is

y = c1 + c2x + c3x
2 + c4x

3.

Applying our boundary conditions yields

y(0) = c1 = 0

y′(0) = c2 = 0

y′′(L) = 2c3 + 6c4L = 0

y′′′(L) + λy′(L) = 6c4 = 0.

Then we have the matrix

L =




1 0 0 0

0 1 0 0

0 0 2 6L

0 0 0 6
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which has determinant

det(L) = 12.

Since det(L) 6= 0, we have a nonsingular matrix and once again only the trvial

solution exists.

Case 3: Let λ > 0 with λ = µ2 for µ 6= 0. Then the general homogeneous

solution is

y = c1 + c2x + c3 cos (µx) + c4 sin (µx)

Applying the boundary conditions yields

y(0) = c1 + c3 = 0

y′(0) = c2 + c4µ = 0

y′′(L) = −c3µ
2 cos(µL) − c4µ

2 sin(µL) = 0

y′′′ (L) + λy′ (L) =

µ3c3 sin (µL) − µ3c4 cos (µL) + µ2 [c2 − c3µ sin (µL) + c4µ cos (µL)] = 0.

After simplifying the RHS of the last boundary condition the corresponding matrix

for the boundary conditions is

M =




1 0 1 0

0 1 0 µ

0 0 −µ2 cos(µL) −µ2 sin(µL)

0 µ2 0 0




and has determinant

det(M) = µ5 cos(µL).
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For a nontrivial solution we need det(M) = 0. This will occur only when cos(µL) =

0. Thus, µL = (2n−1)π
2

. Hence, µ1 = π
2L

and so λ1 = π2

4L2 . To determine ϕ1, we

can substitute for µ1 in the boundary conditions and solve the system accordingly.

Therefore, our boundary conditions form the system

c1 + c3 = 0 (3.19a)

c2 + c4
π

2L
= 0 (3.19b)

−c3

( π

2L

)2

cos
( π

2L
L
)
− c4

( π

2L

)2

sin
( π

2L
L
)

= 0 (3.19c)

c2

( π

2L

)2

= 0. (3.19d)

From equation (3.19d), c2 = 0. Simplifying equation (3.19c), we have −c4

(
π
2L

)2
= 0

and so c4 = 0. This leaves us with c1 + c3 = 0 or c1 = −c3. Substituting into our

general solution we have

y = −c3 + c3 cos
( π

2L
x
)

Thus, ϕ1 = 1 − cos
(

π
2L

x
)

by choosing c3 = −1.
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CHAPTER 4

ANALYSIS AND APPLICATION

It is important to note that the context of the problems from Chapter 3 deal

with ideal columns. An ideal column is “one that is perfectly straight before loading,

is made of homogeneous material, and upon which the load is applied through

the centroid of the cross section” [4]. Naturally, ideal columns are impossible to

construct. However, applying the analysis of ideal columns is crucial for determining

the stability and construction of columns for structures.

The results of Chapter 3 show that both the buckling load, λ1, and buckling

shape, ϕ1, are dependent only on the length of the column. To be more specific, the

buckling load “is independent of the strength of the material; rather it depends only

on the column’s dimensions . . . and the material’s stiffness,” which is also referred to

as the material’s modulus of elasticity [4]. The buckling load is also the maximum

weight a column may support. If any amount of weight over the buckling load

is applied, then buckling, as determined by ϕ1, will occur. As for the shape of the

buckled column, we must consider the buckling load, or critical load, in more applied

terms.

The Euler Load is given by

Pcr = n2π2EI
L2 ,

where E is the modulus of elasticity for the material of the column, I is the least

moment of intertia of the column, and L is the unsupported length of the column.
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This equation pertains to columns that are free to rotate or “pinned” at the ends.

We can consider this equation to be the applied variation of our theoretical critical

loads. This is due to the fact that our results only take into consideration how a

particular column is supported while the Euler Load also takes into consideration

other properties of the column such as the stiffness of its material and its least

moment of interia. A key fact of the Euler Equation and our results is that the

value of n represents the number of waves in the buckled column. Consider the

Euler Load. If we let n = 2, then this new value will be four times the buckling

load. This buckled, or deflected, shape is said to be unstable. Thus, more than one

wave in a buckled column cannot exist [4]. This is why we choose n = 1, the least

buckling load, for both the Euler Load and ideal columns as seen in Chapter 3.

Structurally speaking, “efficient columns are designed so that most of the col-

umn’s cross-sectional area is located as far away as possible from the principal

centroidal axes for the section.” Thus, hollow sections such as tubes are a more

preferable type of column as opposed to solid columns [4].

The following is a table of other boundary conditions, buckling loads, and the

resulting function modeling the shape of the buckled column. Note that because of

Theorem 2.1.3 we are free to choose constants for ϕ1 so long as the constants satisfy

the boundary conditions. Thus, there may be minor discrepancies in the buckled

shape listed and our resulting buckled shape [3].
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Table 4.1. Boundary Conditions and Corresponding Buckling Shapes [3]

Boundary

Conditions

Theoretical

Effective

Length

Engineering

Effective

Length

Buckling Shape

Free-Free L 1.2L sin
(

πx
L

)

Hinged-Free L 1.2L sin
(

πx
L

)

Hinged-Hinged*

(see Problem 1)

L L sin
(

πx
L

)

Guided-Free 2L 2.1L sin
(

πx
2L

)

Guided-Hinged 2L 2L cos
(

πx
2L

)

Guided-Guided L 1.2L cos
(

πx
L

)

Clamped-Free

(see Problem 4)

2L 2.1L 1 − cos
(

πx
2L

)

Clamped-Hinged**

(see Problem 2)

0.7L 0.8L sin(kx)−kL cos(kx)+kL

Clamped Guided L 1.2L 1 − cos
(

πx
L

)

Clamped-Clamped

(see Problem 3)

0.5L 0.65L 1 − cos
(

2πx
L

)

*Simply-supported column

**k = 1.4318π
L
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