Lesson: Division of Fractions Math Academy – Day 09 Student Notes

Goals:

- Demonstrate division of fractions with models, drawings, equations
- Solve real world problems involving division of fractions
- Create the standard algorithm for division of fractions

Prerequisite Knowledge:

- Understand meaning of division
- Understand multiplication of fractions
- Know single digit multiplication tables
- Understand equivalent fractions

Activities

1. Whole Class Discussion: Which operations with fractions require a common denominator and why? Are there any operations with fractions that do not require a common denominator and why? Are there any operations with fractions where a common denominator is optional and why?

2. Consider the following scenario:

Jimmy has made 18 cupcakes to bring to his friends birthday party. Upon arriving at the party, he finds out that there are six people attending the party including himself. How many cupcakes does each person receive?

- a. Write the expression that represents this scenario.
- b. Write the result.
- c. Whole Class Discussion: Which operation was used in this scenario and how do you know that operation is being used (i.e. what part of the problem makes that operation apparent for use)?

3. Consider the following scenario:

Alexa is making brownies. The recipe calls for ½-cup of cocoa powder. Upon looking in her cupboard, she realizes that she only has a ¼-cup measuring cup. How many ¼-cup scoops does she have to measure out in order to make the brownie recipe?

a. Draw a picture of this scenario.

b. Write the expression that represents this scenario.

- c. Write the result.
- d. Whole Class Discussion: Which operation was used in this scenario and how do you know that operation is being used (i.e. what part of the problem makes that operation apparent for use)?

- 4. Find your fraction strips from previous class periods. If you do not have them, then create three new strips for the following fractions: ¹/₂, ¹/₄, and 1/3.
- 5. Working with partner, for each of the following problems, translate the math into English, and then use the fraction strips to determine the result. Draw your findings. Be prepared to share your drawings, results, and translations with the class.

a.
$$1 \div \frac{1}{2}$$
 means how many _____ are in _____.

b.
$$1 \div \frac{1}{4}$$
 means

c.
$$1 \div \frac{1}{3}$$
 means

d.
$$1 \div \frac{2}{3}$$
 means

e.
$$\frac{3}{4} \div \frac{1}{4}$$
 means

6. With your partner, list any patterns that you notice with the expressions and their results from problem 5. Be prepared to share these with the class.

- 7. A recipe calls for 1/4 of a cup of sugar. How many batches of the recipe can you make if you have a 1/2 of a cup of sugar available?
 - a. Draw a picture of the scenario and write the result.

- b. Write an expression that represents the scenario.
- c. Find the result using the paper-and-pencil method.

- 8. A recipe calls for 1/2 of a cup of sugar. How many batches of the recipe can you make if you have a 1/4 of a cup of sugar available?
 - a. Draw a picture of the scenario and write the result.

- b. Write an expression that represents the scenario.
- c. Find the result using the paper-and-pencil method.

- 9. Lily has ³/₄ of a cup of blueberries. She is using a muffin recipe that calls for 1/3 a cup of blueberries. How many batches of the recipe can she make?
 - a. Draw a picture of the scenario and write the result.

- b. Write an expression that represents the scenario.
- c. Find the result using the paper-and-pencil method.

- 10. Cody has 2 and ½ cups of mini Reese's peanut butter cups. A homemade ice cream recipe calls for 1 and ½ cups of mini Reese's peanut butter cups. How many batches of the homemade ice cream recipe can he make?
 - a. (Optional) Draw a picture of the scenario and write the result.

b. Write an expression that represents the scenario.

c. Find the result using the paper-and-pencil method.

Lesson: Division of Fractions Math Academy – Day 09 Instructor Notes

Goals:

- Demonstrate division of fractions with models, drawings, equations
- Solve real world problems involving division of fractions
- Create the standard algorithm for division of fractions

Prerequisite Knowledge:

- Understand meaning of division
- Understand multiplication of fractions
- Know single digit multiplication tables
- Understand equivalent fractions

Lesson Materials:

- Student Notes for Day 09
- Additional fraction strips that have not been folded. (color does not matter for this day)

Lesson Breakdown:

Activity	Size of Group	Time in Activity Total Time: 115 minutes
When common denominators necessary?	Whole class discussion	5 minutes
Jimmy Scenario II	Partners, except part c is a whole class discussion	10 minutes
Alexa Scenario	Partners, except part d is a whole class discussion	15 minutes
Getting fraction strips ready	Individual	5 minutes
Break	Whole Class	5 minutes
Dividing 1	Partners	25 minutes
Seeing Patterns	First between partners then Whole Class Discussion	10 minutes
Recipe Problem 1	Partners	10 minutes
Recipe Problem 2	Partners	10 minutes
Lily Scenario	Partners	10 minutes
Cody Scenario	Partners	10 minutes

Activities

1. Whole Class Discussion: Which operations with fractions require a common denominator and why? Are there any operations with fractions that do not require a common denominator and why? Are there any operations with fractions where a common denominator is optional and why?

Common Denominator required: Addition and Subtraction of fractions. A common denominator is needed so that there are equal sized pieces to be combined or taken from.

Do not require Common Denominators: Multiplication and Division do not require common denominators.

Optional Common denominator: Multiplication and Division can be done using common denominators. The result will need to be simplified or reduced in the end.

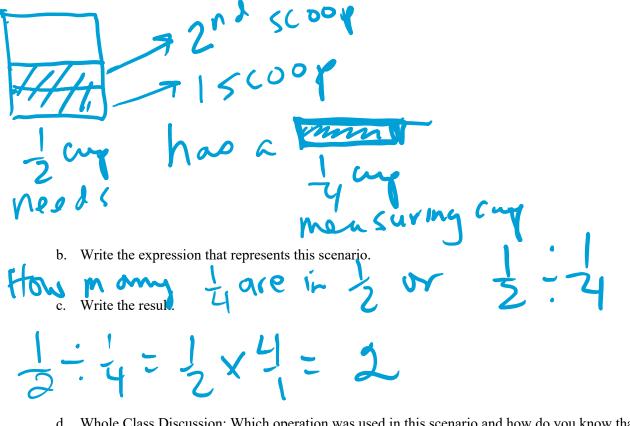
2. Consider the following scenario:

Jimmy has made 18 cupcakes to bring to his friends birthday party. Upon arriving at the party, he finds out that there are six people attending the party including himself. How many cupcakes does each person receive?

a. Write the expression that represents this scenario.

b. Write the result.

9


c. Whole Class Discussion: Which operation was used in this scenario and how do you know that operation is being used (i.e. what part of the problem makes that operation apparent for use)?

DIVISION was used. Objects are being divided up between 6 people

3. Consider the following scenario:

Alexa is making brownies. The recipe calls for ½-cup of cocoa powder. Upon looking in her cupboard, she realizes that she only has a ¼-cup measuring cup. How many ¼-cup scoops does she have to measure out in order to make the brownie recipe?

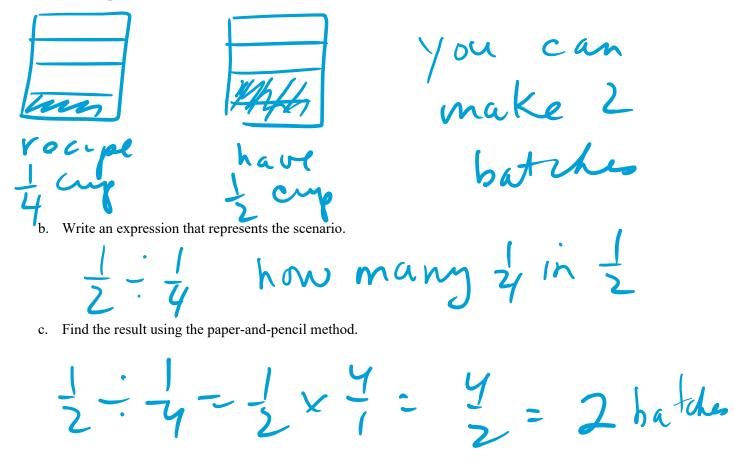
a. Draw a picture of this scenario.

d. Whole Class Discussion: Which operation was used in this scenario and how do you know that operation is being used (i.e. what part of the problem makes that operation apparent for use)?

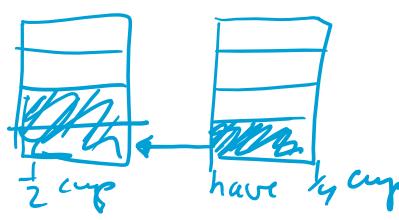
VISION. We are repented subtraction so Amber Schreve and Thomas Gei VISION is a quick way to Solu

- 4. Find your fraction strips from previous class periods. If you do not have them, then create three new strips for the following fractions: ¹/₂, ¹/₄, and 1/3.
- 5. Working with partner, for each of the following problems, translate the math into English, and then use the fraction strips to determine the result. Draw your findings. Be prepared to share your drawings, results, and translations with the class.

a.
$$1 \div \frac{1}{2}$$
 means how many $\frac{1}{2}$ are in $\frac{1}{2}$.
 $1 \longrightarrow \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$


d.
$$1 \div \frac{2}{3}$$
 means how many $\frac{2}{3}$ are in 1
 $1 \div \frac{2}{3}$ means how many $\frac{2}{3}$ are in $\frac{1}{2}$ $\frac{2}{3}$ in 1
e. $\frac{3}{4} \div \frac{1}{4}$ means how many $\frac{1}{4}$ are in $\frac{3}{4}$
 $1 \div \frac{3}{4} \div \frac{1}{4}$ means how many $\frac{1}{4}$ are in $\frac{3}{4}$
 $1 \div \frac{3}{4} \div \frac{1}{4}$ means how many $\frac{1}{4}$ are in $\frac{3}{4}$

6. With your partner, list any patterns that you notice with the expressions and their results from problem 5. Be prepared to share these with the class.


The result is the reciprical - the year fraction

Amber Schreve and Thomas Geil

- 7. A recipe calls for 1/4 of a cup of sugar. How many batches of the recipe can you make if you have a 1/2 of a cup of sugar available?
 - a. Draw a picture of the scenario and write the result.

- 8. A recipe calls for 1/2 of a cup of sugar. How many batches of the recipe can you make if you have a 1/4 of a cup of sugar available?
 - a. Draw a picture of the scenario and write the result.

b. Write an expression that represents the scenario.

ion man

14

not enough

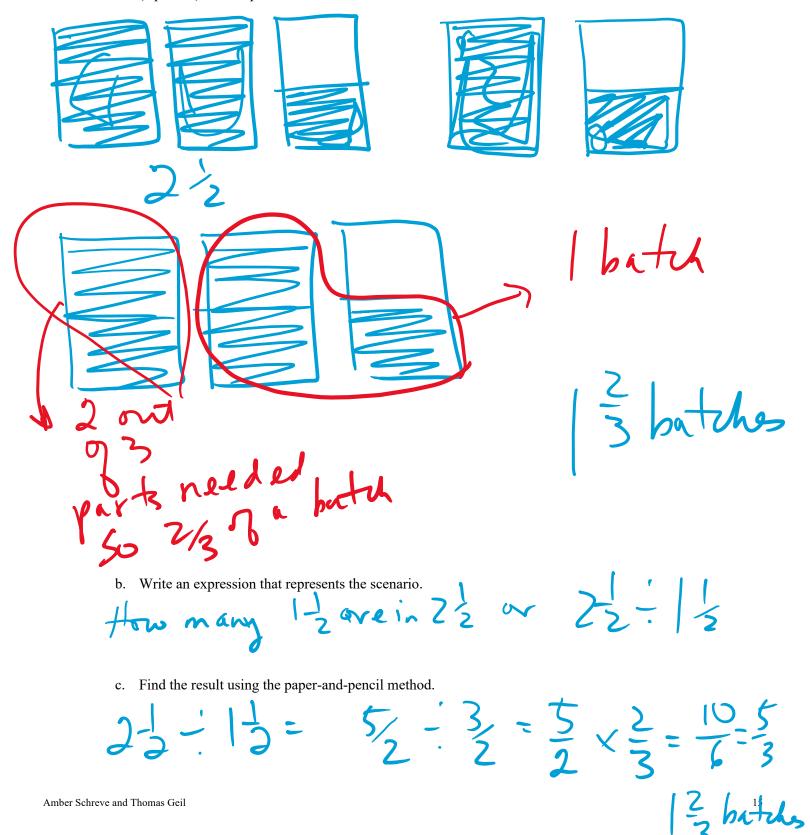
verie

make (wh

c. Find the result using the paper-and-pencil method.

x 2, -

- 9. Lily has ³/₄ of a cup of blueberries. She is using a muffin recipe that calls for 1/3 a cup of blueberries. How many batches of the recipe can she make?
 - a. Draw a picture of the scenario and write the result.


need see th b. Write an expression that represents the scenario.

are my

c. Find the result using the paper-and-pencil method.

34×3- 54 = 24 butche

10. Cody has 2 and ½ cups of mini Reese's peanut butter cups. A homemade ice cream recipe calls for 1 and ½ cups of mini Reese's peanut butter cups. How many batches of the homemade ice cream recipe can he make?
a. (Optional) Draw a picture of the scenario and write the result.

Name:

- 11. Lily has 2/3 of a cup of blueberries. She is using a muffin recipe that calls for 1/4 a cup of blueberries. How many batches of the recipe can she make?
 - a. Draw a picture of the scenario and write the result.

- b. Write an expression that represents the scenario.
- c. Find the result using the paper-and-pencil method.
- 12. Cody has 3 and 1/4 cups of mini Reese's peanut butter cups. A homemade ice cream recipe calls for 1 and ½ cups of mini Reese's peanut butter cups. How many batches of the homemade ice cream recipe can he make?
 - a. Write an expression that represents the scenario.

b. Find the result using the paper-and-pencil method.

MATHPH-700 Math Academy Day 09 Homework – Division of Fractions Solutions

1. 1. Lily has 2/3 of a cup of blueberries. She is using a muffin recipe that calls for 1/4 a cup of blueberries. How many batches of the recipe can she make?

Name:

- a. Draw a picture of the scenario and write the result.
- $\frac{2}{3}$ $\frac{1}{2}$ $\frac{2}{3}$ $\frac{2}$
 - b. Write an expression that represents the scenario.

c. Find the result using the paper-and-pencil method.

- 2/3 4 = 23 × 4 = 3 = 23 batche
- 2. Cody has 3 and 1/4 cups of mini Reese's peanut butter cups. A homemade ice cream recipe calls for 1 and ½ cups of mini Reese's peanut butter cups. How many batches of the homemade ice cream recipe can he make?
 - a. Write an expression that represents the scenario.

b. Find the result using the paper-and-pencil method.

 $\frac{1}{2} - \frac{2}{12}$