

www.CreateEnergy.org

Developing a Solar Roadmap Strategic Plan for Your School

Ken Walz, Madison College Renewable Energy Program Director Amanda Schienebeck, Solar on Schools Program Manager

November 13, 2020

www.midwestrenew.org

Acknowledgements

NAME AND POST OFFICE ADDRESS OF

This work was partially supported by the National Science Foundation Advanced Technological Education Program (awards 1600934, 1800893, 1901852, 2000714) and the Department of Energy Solar Energy Technologies Office (awards DE-EE0006910 and DE-EE0008573). The views, opinions and recommendations expressed are those of Madison College and the CREATE Energy Center and do not necessarily reflect those of the National Science Foundation or the Department of Energy.

We live at a historic time...

Renewable energy costs hit new lows, now cheapest new power option for most of the world

Phil Dzikiy - May. 29th 2019 2:54 pm ET 🎔 @phildzikiy

(I) UNITED STATES DEPARTMENT OF LABOR

Z BUREAU OF LABOR STATISTICS

OCCUPATION FINDER | OOH FAQ | OOH GLOSSARY | A-Z INDEX | OOH SITE MAP

Occupational Outlook Handbook >

Fastest Growing Occupations

Fastest growing occupations: 20 occupations with the highest percent change of employment between 2018-28.

Click on an occupation name to see the full occupational profile.

Clean Energy Jobs:

- 1) Pay a family supporting wage
- 2) Cannot be outsourced
- 3) Cannot be done by robots
- 4) Benefit society

OCCUPATION	\$ GROWTH RATE, 2018-28	•	2018 MEDIAN PAY 🔷 🍣
Solar photovoltaic installers		63%	\$42,680 per year
Wind turbine service technicians		57%	\$54,370 per year
Home health aides	37%		\$24,200 per year
Personal care aides	36%		\$24,020 per year
Occupational therapy assistants	33%		\$60,220 per year

Why Create a Solar Roadmap?

Solar Photovoltaic Roadmap

Version 3.0

March 1, 2020

Smart of Allocation of Resources

- Most school districts operate multiple buildings at multiple locations
- There are many ways to invest \$ to improve the energy footprint of school facilities, solar is just one of them
- Want to spend \$ where it has the greatest benefit
- Need to establish priorities

A 10-Step Guide to Creating a Solar Roadmap

- 1. Assemble Team and Articulate Purpose
- 2. List and Rank Motivating Objectives
- 3. Identify Stakeholders
- 4. Quantify Current Energy Usage and Costs
- 5. Examine Energy Management Practices
- 6. Assess Sites for Solar
- 7. Economic Modeling
- 8. Prioritize Projects
- 9. Share the Solar Roadmap Plan
- 10. Implement Projects

Download available at:

www.CreateEnergy.org

Honors student: Steven Ansorge

Honors Mentor: Ken Walz

Step 1: Assemble Roadmap Team

Steven Ansorge Student Senate President

Tom Helbig Faculty Member & District Electrician

Wes Marquardt Facilities Director

Mark Thomas Vice President & CFO

Ken Walz Faculty Member & Renewable Energy Program Director

Step 2: Determine Motivating Objectives

What do you feel are the most important reasons for Madison College to "go solar"	Rank	Rank	Rank	Rank	Rank	Average Rank
cost savings	2	1	2	4	4	2.6
learning opportunities for students	1	4	3	2	3	2.6
energy budget certainty (cost hedging)	3	2	4	1	5	3.0
social and environmental goals	4	5	1	6	1	3.4
energy resilience for critical electrical loads	6	6	6	3	2	4.6
"green" visibility	5	3	5	5	6	4.8

Step 3: Identify Stakeholders

START <> FINISH								
	Development of Solar Roadmap	Prioritization of Solar Sites	Exploration of Funding Vehicles	Proposal and Approval of Projects	Legal/ Contractual	Project Design	Project Execution	Operations and Maintenance
	PV Roadmap team	PV RoadMap Team	PV RoadMap Team	PV RoadMap Team	Facilities Team	Facilities Team	Facilities Team	Facilities Team
Internal Stakeholders		Campus Managers	Finanical Team	Presidents Office	Legal Office	Program Faculty	Faculty?	Faculty?
		PV Students?	MATC Foundation	College Board	Procurement Office	Students?	Students?	Students?
			Grants Office		Grants Office			
		Solar Contractors	Electric Providers	WTCS	Solar Developers	Solar Developers	Solar Developers	Solar Contractors
al ders		Roofing Contractors	NSF, DOE, etc.	Electric Providers	Electric Providers	RE Industry Adv Board	Solar Contractors	
Externa			Focus on Energy	City Permitting		Electric Providers	Electric Providers	
St			PV Developers	FAA Permitting		NREL	Permitting Bodies	

Step 4: Quantify Energy Usage and Costs

Electric bills represent an ongoing operational cost for colleges and universities

Madison Gas and Electric Rates per	kWh Summer	Winter
Off-Peak (nights and weekends)	\$0.049	\$0.037
On-Peak (days)	\$0.099	\$0.086

Step 5: Examine Energy Management Practices

Step 6: Assess Sites for Solar

Health Education Building

Electric Provider = MGE, CG-2 Rate Energy Use Index (Btu/ft²) = 33,178 Peak Electric Load = 545 kW

Age of Roof = 3 years Rooftop size estimate = 250 kWdc

Step 7: Economic Modeling

Age of the Solar PV System (years of operation)

Step 8: Prioritize Projects

System and Status

Target Completion Date

1. Truax Rooftop System 1.85 MW	June 2019
2. Madison South Campus Rooftop System 125 kW	Sept 2019
Reedsburg Campus Ground Mount System 100 kW	Nov 2020
4. Fort Atkinson Ground Mount System Campus 150 kW	Nov 2020
4. New Childcare Center Rooftop System 150 kW	Dec 2020
5. Comm. Ave Instructional Lab – 30 kW Solar + Storage + EV charging	Spring 2021
6. Truax Fitness Center Rooftop System 75 kW	Summer 2021
7. Watertown Campus Ground Mount System	Summer 2021
8. Portage Campus Ground Mount System	Fall 2021
9. Protective Services and Health Education Rooftop Systems	2022
10. Columbus Campus Ground Mount System	2023
11. Truax Parking Canopy Systems	?
12. Truax Energy Storage System (feasibility study completed in 2020)	?

Step 10: Implement Projects

Identify Funding Sources Issue Requests for Proposals Design of System Installation Contracting Commissioning Ongoing O&M

(These are topics for future CREATE webinars...)

midwestrenew.org/solar-on-schools

midwest renewable energy association

What are the components of a solar PV system?

How does my utility credit me for energy our system produces?

How do we determine our ideal solar PV system size?

- Is your goal to offset as much of your energy use as possible?
- Are you limited by roof/other space?
- Are you limited by funding?
- Do you want to maximize your ROI?

What do I need to know about my roof and solar?

- Age Considerations
- Roof Penetrations
- Weight Considerations
- Solar Impacts on Roof Quality

What kind of maintenance is required for these systems?

What if something breaks?

Will my insurance cover damage to the system?

How much will the system cost?

How much can I expect to save on my electrical bills from my PV system?

Finding a Contractor

Consult with a Contractor– may provide a site assessment and financial analysis at no cost:

- MREA Busines Member Directory
- Focus on Energy Trade Allies
- NABCEP
- <u>RENEW Wisconsin Business</u>
 <u>Members</u>

Selecting a Solar Installer

GETTING STARTED:

 The North American Board of Certified Energy Practitioners (NABCEP) maintains an approved list of trained and certified solar installers. Check out the list on their locator map at this link: nabcep.org/installer-locator.

. A number of installers are also members of the MREA, and may have participated or even taught courses for MREA. Visit the MREA Business Directory at: midwestrenew.org/Dusiness-member-directory.

 Focus on Energy maintains a searchable database of their Trade Allies. These are contractors and service providers who partner with Focus to deliver energy efficiency and renewable energy products and expertise to WI residents and businesses. Learn more at: focusonenergy.com/trade-ally/find.

CHECK FOR CERTIFICATIONS: National certifications show an advanced level of knowledge for solar installers such as:

- NABCEP Certified: This national certification requires coursework through accredited training programs, designing &
 installing a specified number of solar installs, & passing a professional technical exam.
- UL Photovoltaic (PV) System Installation Certification: Installers receive the PV System Installer Certification by
 passing an exam that is intended to measure the necessary competencies, safety training, & several years of handson experience in the field.
- Electronics Technicians Association Photovoltaic Installer Certification: This certification involves an in-depth program with apprenticeship & exam requirements.

SEE MORE SOLAR RESOURCES AT: midwestrenew.org/community-resources

- FLIP FOR MORE -

The Midwest Renewable Energy Association (MREA) is a non-profit 501(c)(3) educational organization. Founded in 1990, the MREA promotes renewable energy, energy efficiency, and sustainable living through education and demonstration. To learn more, call 715-592-6595 or visit www.midwestrenew.org. How can we pay for our PV system?

Discuss and Determine Financing Options –

- Total system cost ٠
- Operating budget availability
- Go to referendum/tie solar into other facility upgrades
- Availability/willingness to take out a loan
- Fundraising opportunities
- Grant availability ٠
- Required ROI to move forward
- Ownership type direct ownership, third party ownership, utility owned

Financial and PV Modeling Tools -

- PVwatts.nrel.gov
- SolarProjectBuilder.org

low that you have a basic understanding of ownership models 23 minute video will discuss the common ownership models specifical available to Wisconsin K-12 school PV systems. It delves into the of each ownership type, compares them with one another, and explains the financial returns of the different options using data from installed school PV

Topic Resources	
Resources on Ownership Options	+
Financial Modeling Tools	+
PV Incentives	+
PV Component Pricing	+
Example Preliminary School Solar Proposals	+

> Bid-Ready Solar Projects: RFP Development	
---	--

> Running a Competitive Solicitation & Bid Evaluation

What technical and other considerations should I include on our RFP?

How should we best evaluate our received bids?

REQU Solar Proi	EST FOR PROPOSAL (RFP)
3001110	and a second the second
KEY BID/PROPOSAL DATES -	
RFP Issued/Released:	date
Contractor Site Visits (Indicate if mandatory or optiona	date Note: this may be difficult due to COVID-1
RFP Questions closed: (Questions directed to ????)	date
RFP Answers posted:	date
Bid/Proposal Due Date:	date
Estimated Notification of Award:	date
=	

Section (up to 2	2: BONUS CATEGORIES 24 points)	1 point	2 pts	3pts			
Firm is	located in state	Out of State HQ with Wisconsin Office	Wisconsin HQ with office in Madison College district	HQ in Madison College district			
Prioritiz busines	ze diversity and inclusiveness in is practices	Firm has provided evidence that they prioritize diversity in hiring/contracting processes and uses data to promote inclusiveness. (Up to 3 points)					
Firm ha staff	s a NAPCEP certified installer on	Firm has 1 or more NAPCEP certified employees (up to 3 points depending on evidence provided)					
Are, or coopera corpora owned	contract with, a worker-owned ative, union shop, certified B- ation, or small-, women-, or minority- business enterprise(s) (SWMBEs).	The firm is, or contracts with Co-ops, Union shops, and/or SWMBEs (Up to 3 points depending on evidence provided)					

Wisconsin K-12 Energy Education Program (KEEP) College of Natural Resources **University of Wisconsin - Stevens Point**

Where can I go to get resources to add solar into our curriculum?

Other Teachers & Schools!

Center For Renewable Energy Advanced Technological Education

Merton Community School District

- Commissioned: December 2019
- System Size: 389kW DC
- Expected Year 1 Performance: 491,120 kWh
- Racking: Ecolibrium Ballasted Non-Penetrating
- Modules: Adani 72 Cell Tier 1 355W
- Inverters: SolarEdge + DC Optimizers
- Monitoring: SolarEdge Consumption + Production monitoring
- Solar Installer: SunVest Solar Inc.
- Total System Cost: \$568,185
- Value of Grants & Incentives: \$108,182.28
- Cost/Watt: \$1.46
- 30-Year IRR: 10.3%
- Average Annual Savings: \$70,000
- 30 Year Cashflow: \$1,419,921

2019-2020 Grant Recipients

- Madison West High School
- Merton Elementary
- Merton Intermediate School
- Marshfield High School
- Madsion College Reedsburg
- Madison College Fort Atkinson
- Forest Edge Elementary School
- Northeast Wisconsin Technical College
- Rice Lake Area School District High School
- Rice Lake Area School District Middle School
- Rice Lake Area School District Tainter Elementary
- Midstate Technical College
- Eau Claire Memorial High School
- Eau Claire North High School
- MATC Mequon Campus
- MATC Oak Creek Campus

Some Resources to get you started for solar at YOUR SCHOOL

SOLAR ON SCHOOLS

Wisconsin public schools spend more than \$175 million annually on energy, the largest expense outside of personnel. Solar PV installations provide a unique means for schools to reduce operating expenses without cutting educational programs. Schools can also utilize these installations to educate and energize the next generation with hands-on renewable energy curriculum, exposing them to careers in clean energy. The industry added jobs 70 percent faster than the overall economy from 2015-2019. The demand for these jobs is only going to continue to grow as our national energy economy transitions away from fossil fuels.

Recognizing these unique benefits, and with generous support from the Couillard Solar Foundation, Solar on Schools was developed to provide a range of resources to Wisconsin schools, assisting with and simplifying the solar project development process. The program aims to help Wisconsin schools realize the financial, educational, and community benefits of going solar. Wisconsin schools are going solar.

Program Contact

Amanda Schienebeck **Program Manager** Email: amandas@midwestrenew.org Phone: (608)-217-3281

ROWMAN & LITTLEFIELD

ACADEMIC - PROFESSIONAL - GENERAL -

P 📜 🖸 👤

The Inevitable Solar School Building the Sustainable Schools of the Future, Today MARK HANSON

"The Inevitable Solar School: Building the Sustainable School of the Future, Today" describes the two major forces that are driving public and private schools and other buildings to solar energy. These forces are the recognition of climate change and the cost advantage of on-site solar energy. Either force would be sufficient reason on its own to change the school market, but in combination they become indominable.

Sustainability has emerged as a widely accepted theme in school building design. Daylight and views, indoor air quality, responsible life-cycle materials selection, and energy and water efficiency are expected features. This book adds on-site solar energy, sufficient in many instances to meet all of a school's energy requirement, as a critical element of sustainability. The zero energy school is the sustainable school of the future.

Contrary to common expectations, zero energy sustainable schools are being built at costs that are competitive with regional school cost averages. This outcome requires teamwork between school... [>>]

Center For Renewable Energy Advanced Technological Education

www.CreateEnergy.org

Solar On Schools Toolkit

- 1. Introduction, Rationale, Acknowledgments, References .PDF
- 2. 10-Step Guide to Create a Solar Roadmap .PDF
- 3. Solar Roadmap example .PDF | .DOCX
- 4. Request for Proposals (RFP) for Solar Projects template and example .PDF | .DOCX
- 5. RFP Scoring Rubric for Solar Projects template .XLSX
- 6. Solar Installation Timelapse Video example https://youtu.be/LlvC-pVM0m8

Solar PV Faculty Institute July 2021

www.CreateEnergy.org

Thanks For Joining Us!

Good Luck in Your Solar Endeavors!

Ken Walz kwalz@madisoncollege.edu

Amanda Schienebeck amandas@midwestrenew.org