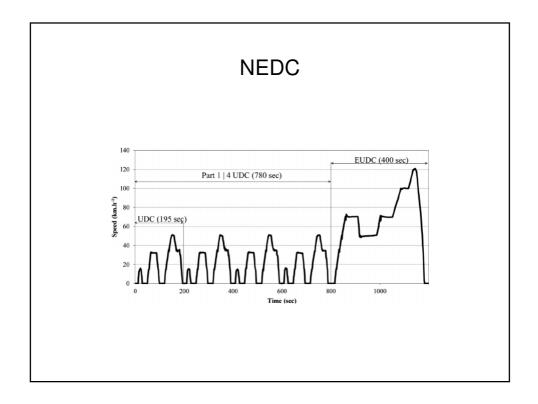
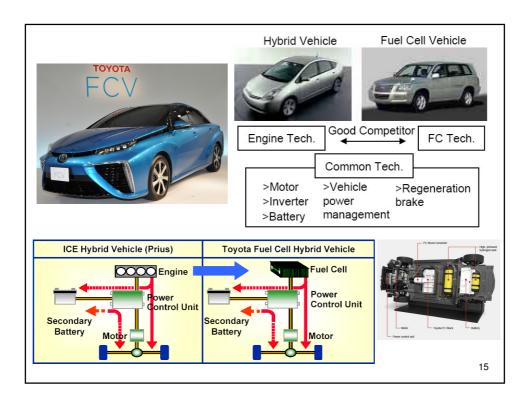
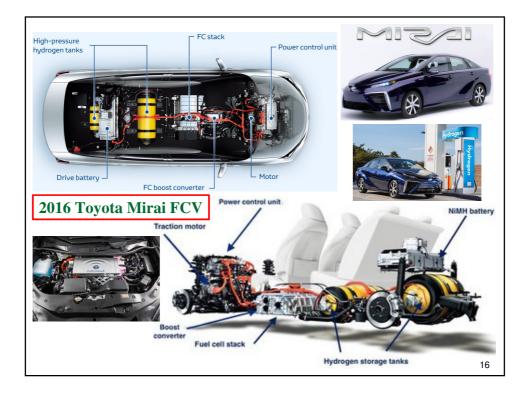
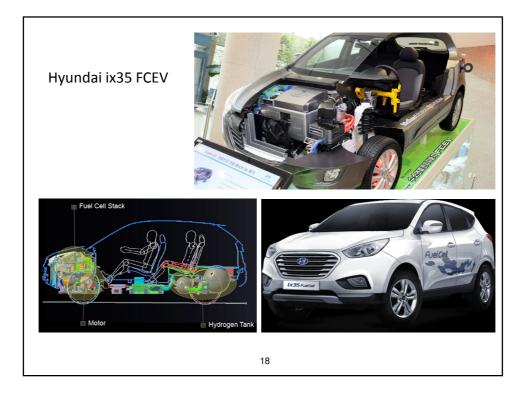

## Driving cycles


- A driving cycle is a series of data points representing the speed of a vehicle versus time
- Driving cycles are used to assess the performance of vehicles such as fuel consumption and polluting emissions
- USA:
  - EPA Federal Test: FTP 72/75 (1978) / SFTP US06/SC03 (2008)
- Europe:
  - NEDC: ECE R15 (1970) / EUDC (1990)
- Japan:
  - 10 mode / 10-15 Mode (1983) / JC08 (2008)
- Global harmonized:
  - WLTP (2015)

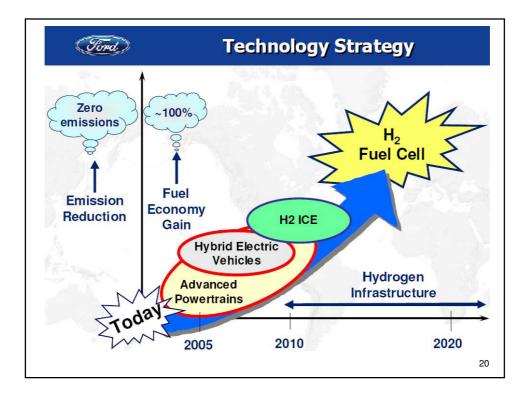


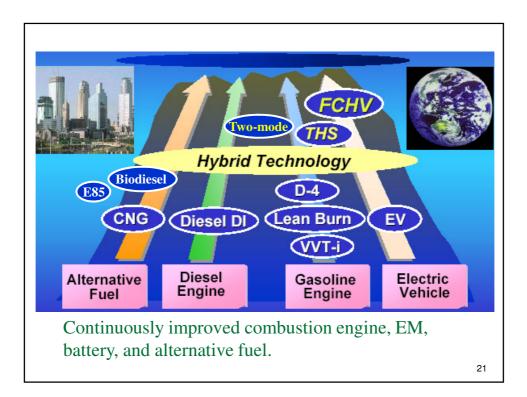



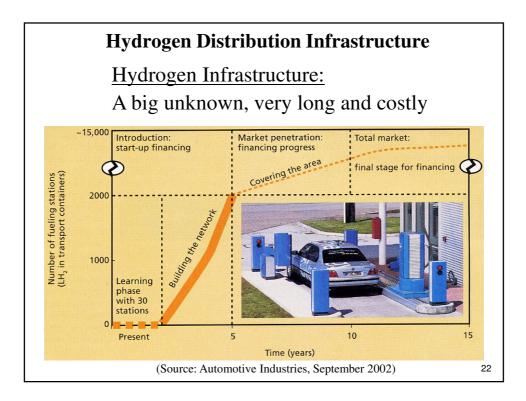


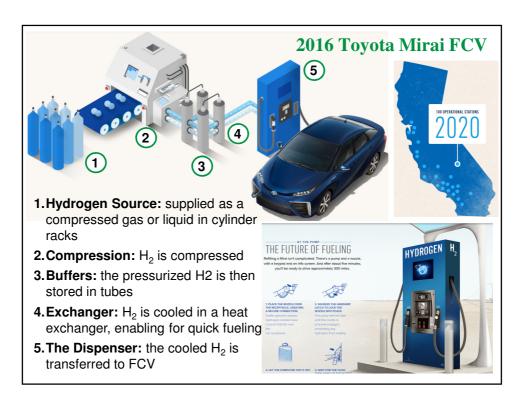



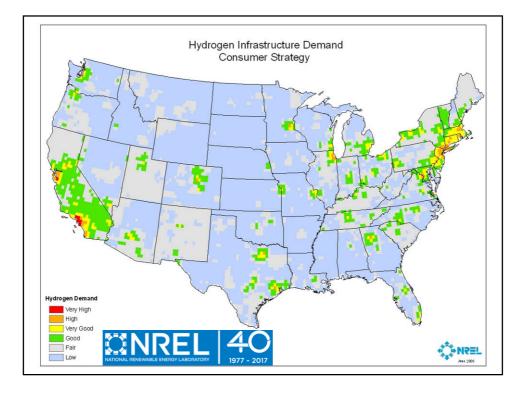


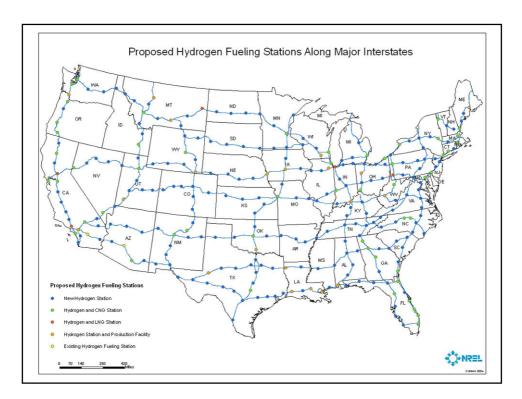



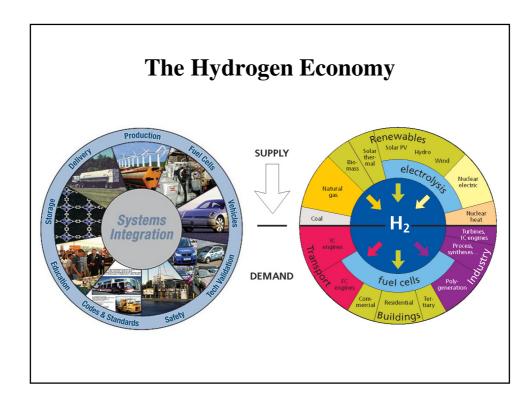











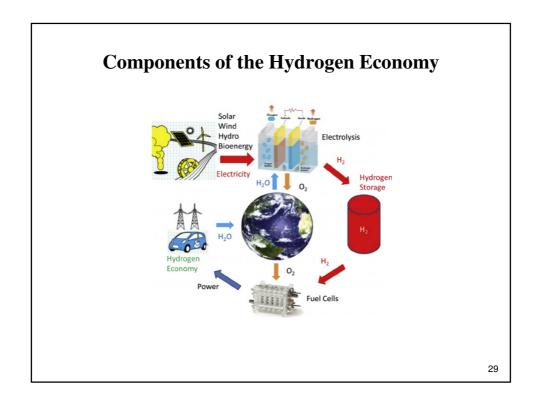


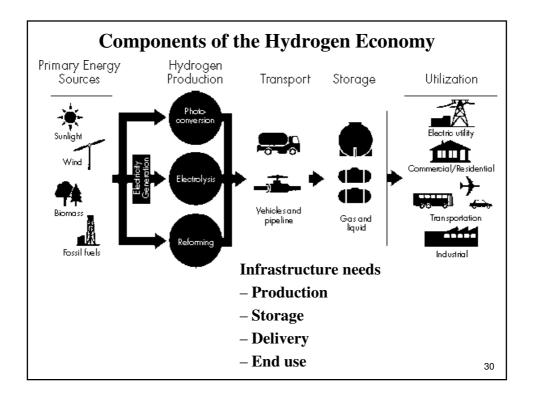


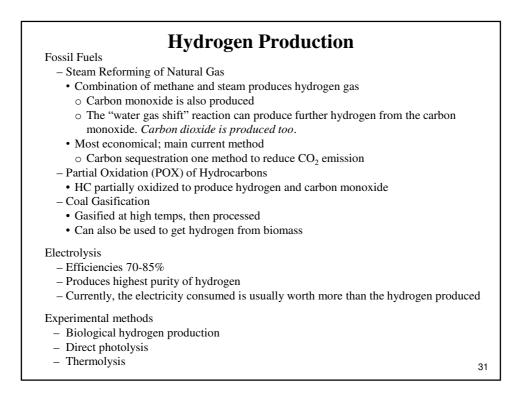

### The Hydrogen Economy

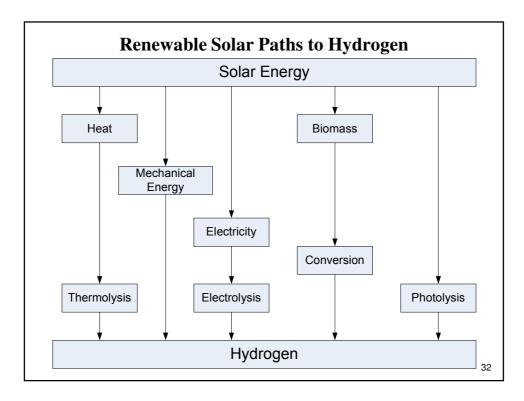
#### Definition

The Hydrogen Economy is a hypothetical large-scale system in which elemental hydrogen  $(H_2)$  is the primary form of energy storage

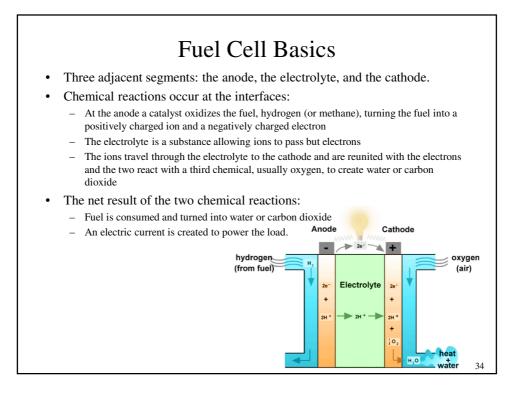

- Fuel cells would be the primary method of conversion of hydrogen to electrical energy Efficient and clean; scalable.
- In particular, hydrogen (usually) plays a central role in transportation.


#### **Potential Advantages**


- Clean, renewable
- Potentially more reliable (using distributed generation)


BUT many roadblocks including potential showstoppers

• Poses great technological challenges for efficient hydrogen production, storage, and transport.



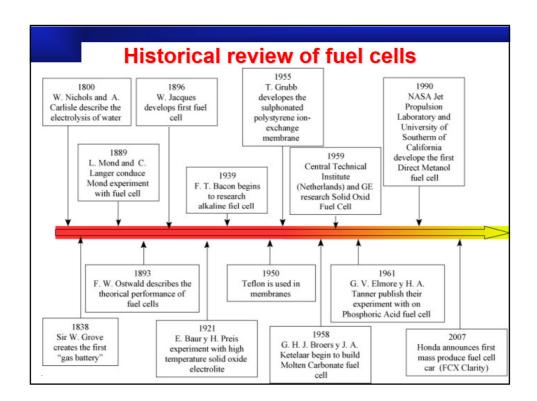


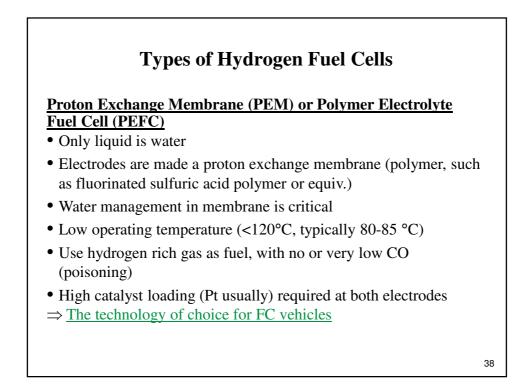


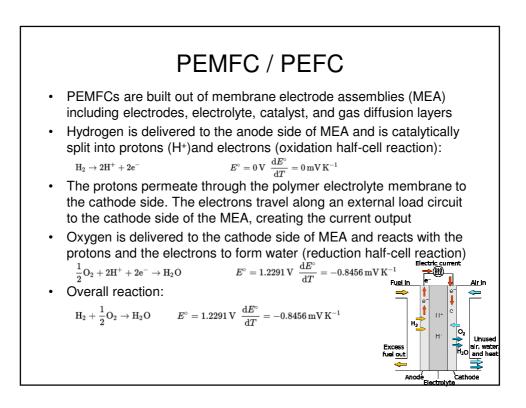


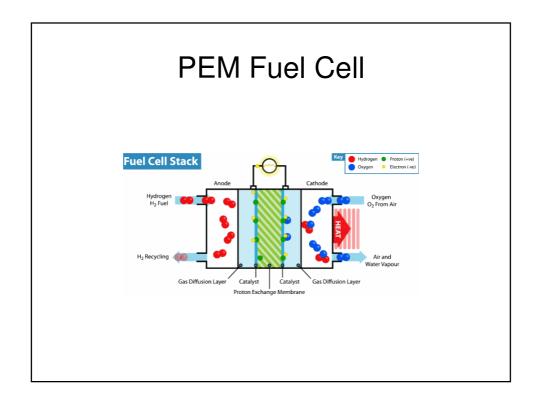

#### Hydrogen Storage Large-Scale Stationary Storage - Underground in depleted oil/gas fields, aquifers, caverns Intermediate- and Small-Scale Stationary/Mobile Storage - The focus of most current research - As a liquid · Advantage: higher energy density, cheaper transport · Disadvantage: economic/energy cost of liquefaction is significant As a compressed gas • Probably best short-term method, particularly with advanced materials to decrease weight Advantages $\circ$ Rapid charging/discharging o Lower costs than liquid storage · Disadvantages: o Low energy density, Probably still acceptable for ground vehicles • Safety (except for public perception) - As a solid form, metal hydrides • Hydrogen is absorbed (into metal mesh) under pressure, released when heated. · Less filling pressure needed · Low energy density, long recharge time, expensive **Experimental Methods** - Improved hydrides; carbon nanotubes; many other materials (eg conversion to ammonia) 33

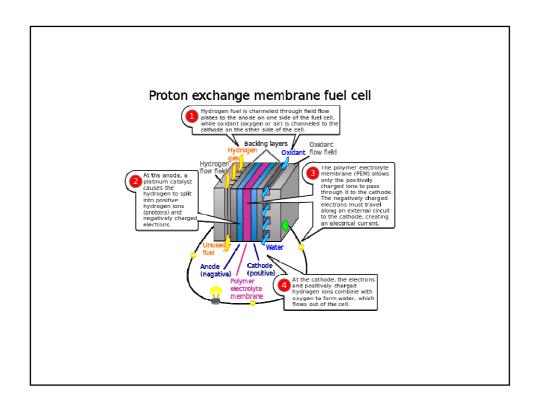


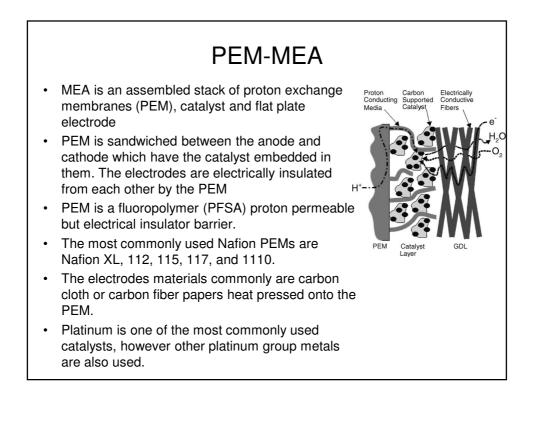

## Fuel Cell Design Features

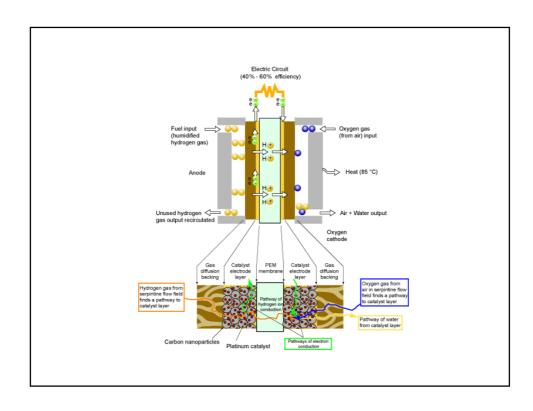

- The electrolyte substance.
  - The electrolyte substance usually defines the type of fuel cell.
- · The fuel that is used.
  - The most common fuel is hydrogen (Methane will produce CO<sub>2</sub>).
- The anode catalyst breaks down the fuel into electrons and ions.
   The anode catalyst is usually made up of very fine platinum powder.
- The cathode catalyst turns the ions into the waste chemicals like water or carbon dioxide.
  - The cathode catalyst is often made up of nickel but it can also be a nanomaterial-based catalyst.
- A typical fuel cell produces a voltage from 0.6 V to 0.7 V at full rated load.
- To deliver the desired amount of energy, the fuel cells can be combined in series and in parallel to form a fuel cell stack

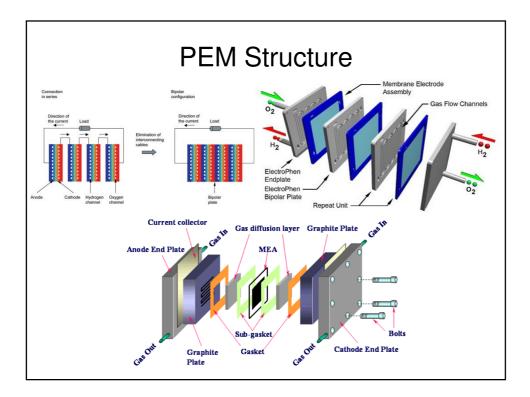


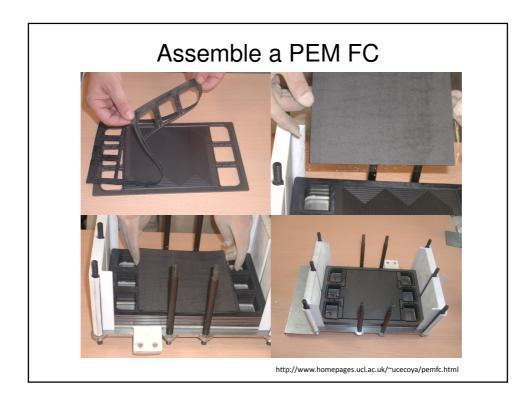


# Major Types of Hydrogen Fuel Cells

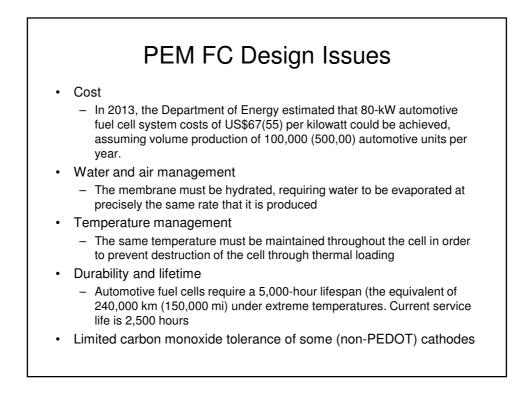

- <u>Proton Exchange Membrane (PEM)</u> or Polymer Electrolyte Fuel Cell (PEFC)
  - $\Rightarrow$  The technology of choice for FC vehicles, or certainly the most common
- Alkaline Fuel Cell (AFC)
- Phosphoric Acid Fuel Cell (PAFC)
- Molten Carbonate Fuel Cell (MCFC)
- Solid Oxide Fuel Cell (SOFC)
  - ⇒ An alternate technology considered for FC vehicles

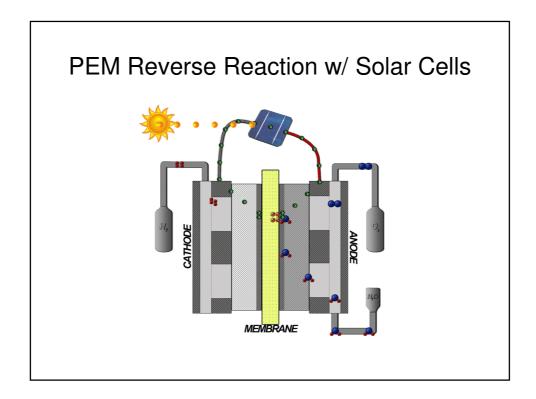


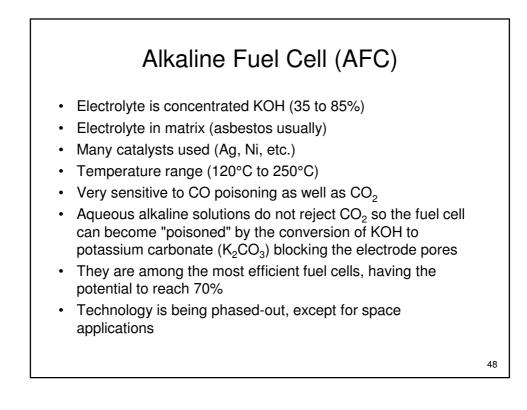



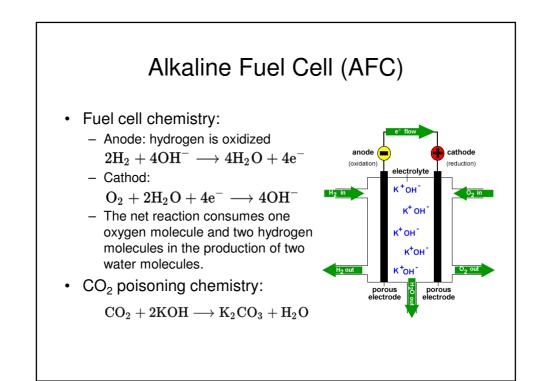



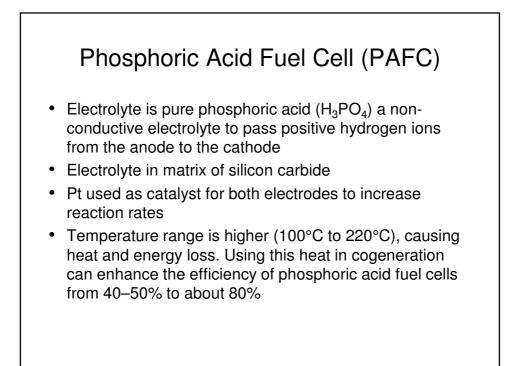



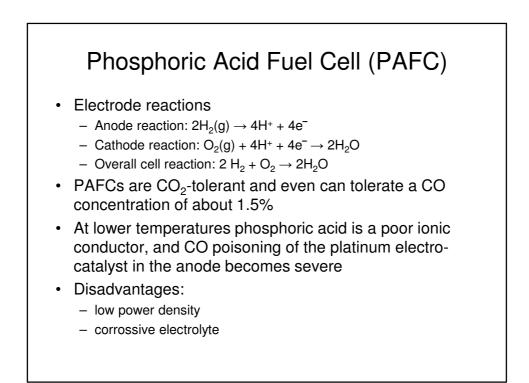



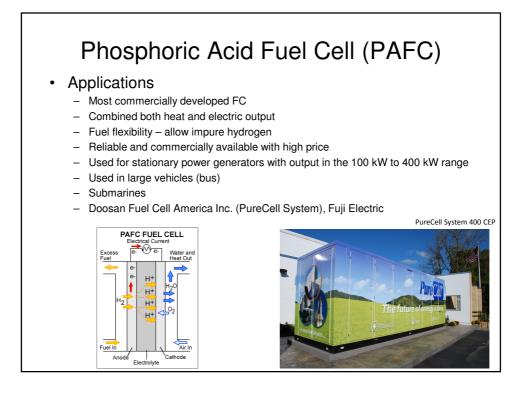






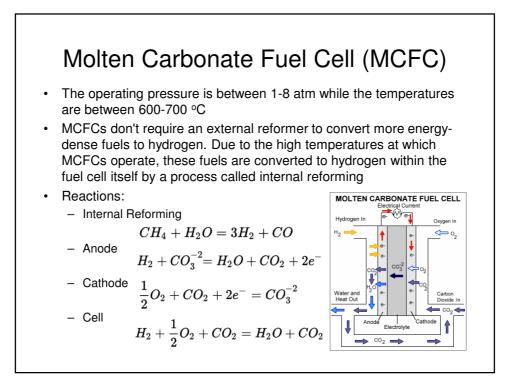



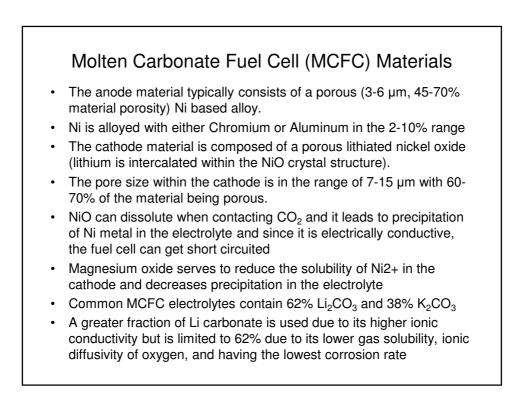


| • | Design                                                                                                                                                                                                                                                                                       |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 0                                                                                                                                                                                                                                                                                            |
|   | - Static (immobilized) electrolyte:                                                                                                                                                                                                                                                          |
|   | Was used in the Apollo space craft and the Space Shuttle.                                                                                                                                                                                                                                    |
|   | Typically use an asbestos separator saturated in potassium hydroxide.                                                                                                                                                                                                                        |
|   | Water production is controlled by evaporation from the anode                                                                                                                                                                                                                                 |
|   | <ul> <li>Typically use platinum catalysts to achieve maximum efficiencies.</li> </ul>                                                                                                                                                                                                        |
|   | <ul> <li>Flowing electrolyte</li> </ul>                                                                                                                                                                                                                                                      |
|   | <ul> <li>Use a more open matrix that allows the electrolyte to flow either between the electrodes (parallel to the electrodes) or through the electrodes transversely</li> <li>Parallel flow: water produced is retained in the electrolyte, and old electrolyte may be exchanged</li> </ul> |
|   | <ul> <li>Transverse flow (EloFlux): has the advantage of low-cost construction and<br/>replaceable electrolyte but so far has only been demonstrated using oxygen.</li> </ul>                                                                                                                |
|   | - Other: metal hydride fuel cell and the direct borohydride fuel cell.                                                                                                                                                                                                                       |
| • | Applications                                                                                                                                                                                                                                                                                 |
|   | - Spacecrafts                                                                                                                                                                                                                                                                                |
|   | <ul> <li>The world's first Fuel Cell Ship HYDRA, an AFC system with 5 kW net output</li> </ul>                                                                                                                                                                                               |
|   |                                                                                                                                                                                                                                                                                              |

# Alkaline anion exchange membrane fuel cells (AAEMFC)

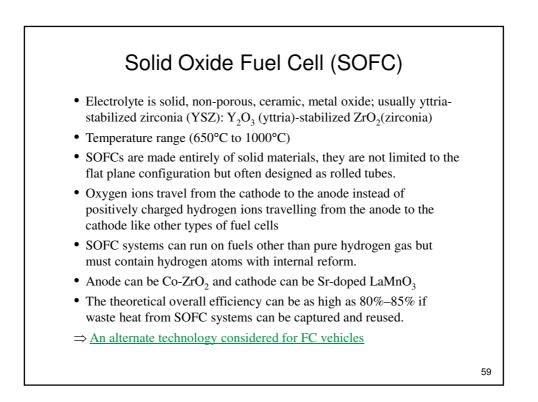
- Also known as hydroxide exchange membrane fuel cells (HEMFCs), anion-exchange membrane fuel cells (AEMFCs), or alkaline membrane fuel cells (AMFCs)
- AAEMFCs are functionally similar to AFCs, but employ a solid polymer electrolyte while AFCs use aqueous (KOH) as electrolyte
- AAEMFCs solve the problems of electrolyte leakage and carbonate precipitation (by K<sub>2</sub>CO<sub>3</sub>), though still taking advantage of benefits of operating a fuel cell in an alkaline environment.
- AAEMFC can use hydrogen or methanol as fuel
- Under alkaline conditions, oxygen reduction reaction kinetics at the cathode of AAEMFC are much more facile than in PEMFCs, allowing use of non-noble metal catalysts such as silver or iron phthalocyanines for the cathode and nickel for the anode
- The biggest challenge in developing AAEMFCs is the anion exchange membrane (AEM) for the movement of free OH<sup>-</sup> ions.

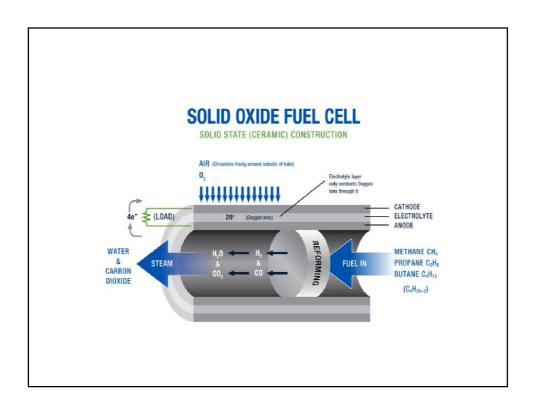


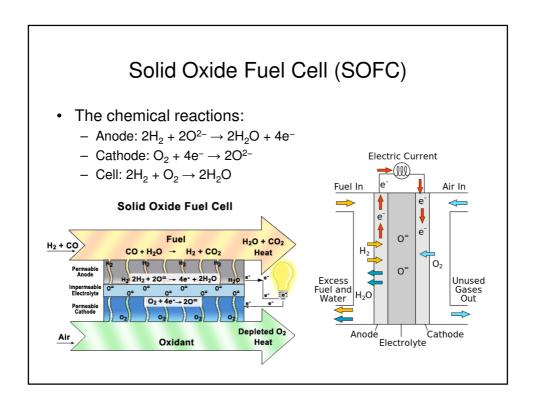


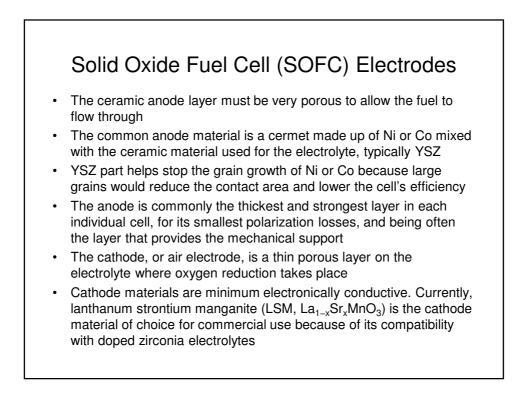



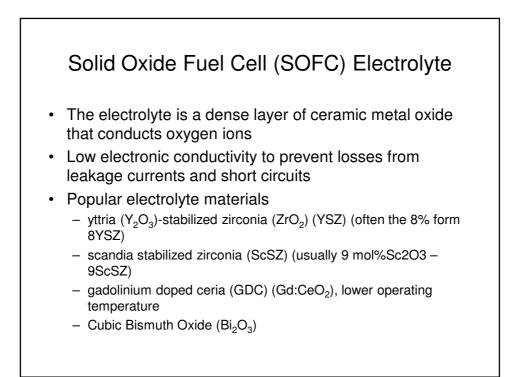

## Molten Carbonate Fuel Cell (MCFC)

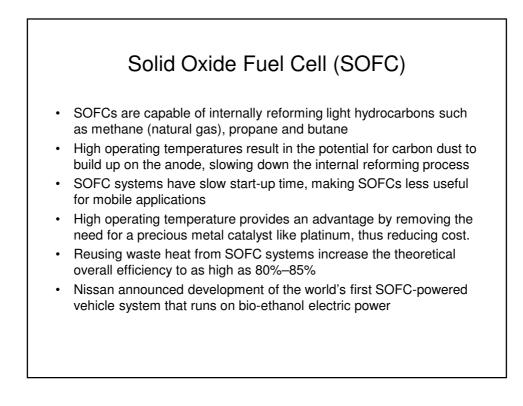

- Electrolytes are alkali (K, Na) carbonate salts
- Temperature Range (600°C to 700°C) for molten salts
- Electrolyte in ceramic matrix of LiAlO<sub>2</sub>
- The salt liquefies at high temperatures, allowing for the movement of charge within the cell
- Usually Ni anode and Ni oxide cathode are used, while Ni also plays catalyst so no additional catalyst required
- Molten carbonate fuel cells can reach efficiencies approaching 60%
- When the waste heat is captured and used, overall fuel efficiencies can be as high as 85%
- Molten carbonate fuel cells are not prone to poisoning by carbon monoxide or carbon dioxide. Carbon oxides is even used as fuel

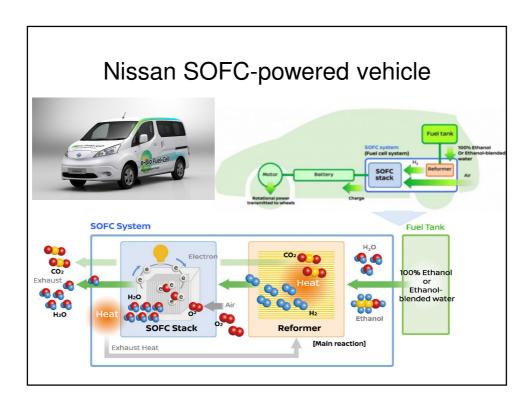


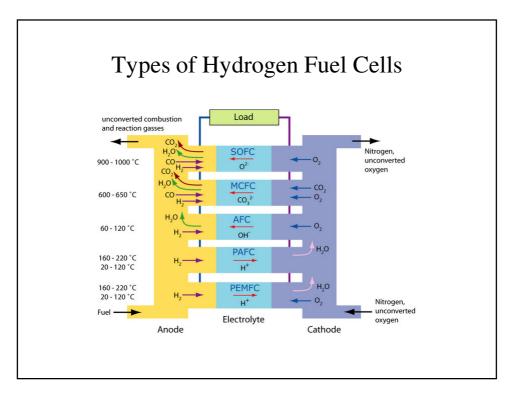


| Electron Flow                     | Oxygen<br>Carbon dioxic<br>Carbon dioxic<br>Carbon dioxic<br>Carbon dioxide<br>& oxygen | 3                                                             | MCFC                                                                                                                           | )                                                                                                                                                                                                                                   |
|-----------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | Component                                                                               | Ca. 1965                                                      | Ca. 1975                                                                                                                       | Current Status                                                                                                                                                                                                                      |
|                                   | Anode                                                                                   | Pt, Pd, or Ni                                                 | • Ni-10 Cr                                                                                                                     | <ul> <li>Ni-Cr/Ni-Al/Ni-Al-Cr</li> <li>3-6 µm pore size</li> <li>45 to 70 percent initial porosity</li> <li>0.20 to .5 mm thickness</li> <li>0.1 to1 m<sup>2</sup>/g</li> </ul>                                                     |
|                                   | Cathode                                                                                 | Ag <sub>2</sub> O or lithiated NiO                            | lithiated NiO                                                                                                                  | <ul> <li>lithiated NiO-MgO</li> <li>7 to 15 µm pore size</li> <li>70 to 80 percent initial porosity</li> <li>60 to 65 percent after lithiation and oxidation</li> <li>0.5 to 1 mm thickness</li> <li>0.5 m<sup>2</sup>/g</li> </ul> |
| Molten Carbonate Fuel Cell (MCFC) | Electrolyte<br>Support                                                                  | • MgO                                                         | <ul> <li>mixture of α-, β-,<br/>and γ-LiAlO<sub>2</sub></li> <li>10 to 20 m<sup>2</sup>/g</li> <li>1.8 mm thickness</li> </ul> | <ul> <li>γ-LiAlO<sub>2</sub>, α-LiAlO<sub>2</sub></li> <li>0.1 to12 m<sup>2</sup>/g</li> <li>0.5 to1 mm thickness</li> </ul>                                                                                                        |
|                                   | Electrolyte <sup>a</sup><br>(wt percent)                                                | <ul> <li>52 Li-48 Na</li> <li>43.5 Li-31.5 Na-25 K</li> </ul> | • 62 Li-38 K                                                                                                                   | <ul> <li>62 Li-38 K</li> <li>60 Li-40 Na</li> <li>51 Li-48 Na</li> </ul>                                                                                                                                                            |
|                                   |                                                                                         | • "paste"                                                     | <ul> <li>hot press "tile"</li> <li>1.8 mm thickness</li> </ul>                                                                 | <ul> <li>51 LI-48 Na</li> <li>tape cast</li> <li>0.5 to1 mm thickness</li> </ul>                                                                                                                                                    |

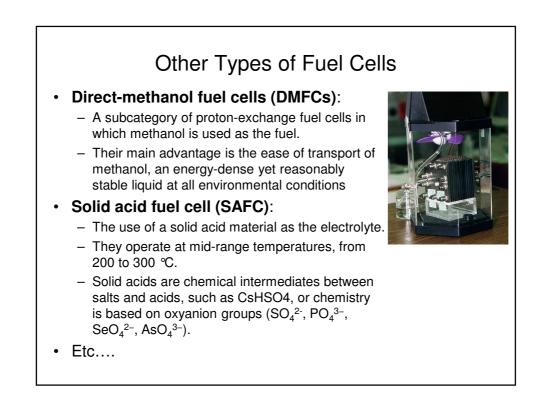








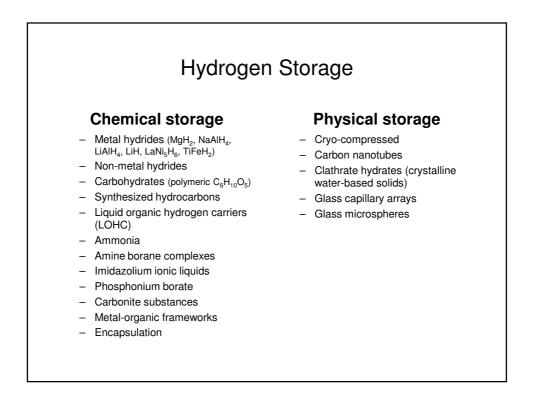

|                                                                                                                                                                        | Types of Hydrogen Fuel Cells         Summary of Basic Chemical Reactions of         Various Types of Fuel Cells         Fuel Cell       Anode Reaction         Cathode Reaction                                |                                                           |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|--|--|
| Fuel Cell                                                                                                                                                              | Anode Reaction                                                                                                                                                                                                 | Cathode Reaction                                          |  |  |  |  |  |  |  |
| Proton Exchange<br>Membrane                                                                                                                                            | $H_2 \rightarrow 2H^* + 2e^-$                                                                                                                                                                                  | $1_2^{\prime} O_2 + 2H^{\star} + 2e^{-} \rightarrow H_2O$ |  |  |  |  |  |  |  |
| Alkaline                                                                                                                                                               | $H_2 + 2(OH)^- \rightarrow 2H_2O + 2e^-$                                                                                                                                                                       | $1/_2 O_2 + H_2O + 2e^- \rightarrow 2(OH)^-$              |  |  |  |  |  |  |  |
| Phosphoric Acid                                                                                                                                                        | $H_2 \rightarrow 2H^+ + 2e^-$                                                                                                                                                                                  | $\frac{1}{2}O_2 + 2H^+ + 2e^- \rightarrow H_2O$           |  |  |  |  |  |  |  |
| Molten<br>Carbonate                                                                                                                                                    | $\begin{array}{c} H_2 + CO_3^{\scriptscriptstyle \mp} \rightarrow H_2O + CO_2 + 2e^{\scriptscriptstyle \mp} \\ CO + CO_3^{\scriptscriptstyle \mp} \rightarrow 2CO_2 + 2e^{\scriptscriptstyle \mp} \end{array}$ | $1/_2 O_2 + CO_2 + 2e^- \rightarrow CO_3^=$               |  |  |  |  |  |  |  |
| Solid Oxide                                                                                                                                                            | $ \begin{array}{c} H_2 + O^{^{=}} \rightarrow H_2O + 2e^{^{-}} \\ CO + O^{^{=}} \rightarrow CO_2 + 2e^{^{-}} \\ CH_4 + 4O^{^{=}} \rightarrow 2H_2O + CO_2 + 8e^{^{-}} \end{array} $                            | $1/_2 O_2 + 2e^- \rightarrow O^-$                         |  |  |  |  |  |  |  |
| CO - carbon monoxide<br>CO <sub>2</sub> - carbon dioxide<br>CO <sub>3</sub> <sup>-</sup> - carbonate ion<br>e <sup>-</sup> - electron<br>H <sup>*</sup> - hydrogen ion | H <sub>2</sub> - hydrogen<br>H <sub>2</sub> O - water<br>O <sub>2</sub> - oxygen<br>OH <sup>-</sup> - hydroxyl ion                                                                                             | 66                                                        |  |  |  |  |  |  |  |

| Summary Of                           | Characterist                                   | ics of Variou                                  | s Types of F                              | Fuel Cells                                             |
|--------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------|--------------------------------------------------------|
|                                      | PEFC                                           | PAFC                                           | MCFC                                      | SOFC                                                   |
| Electrolyte                          | Ion Exchange<br>Membrane                       | Immobilized Liquid<br>Phosphoric Acid          | Immobilized<br>Liquid Molten<br>Carbonate | Ceramic                                                |
| Operating<br>Temperature             | 80°C                                           | 205°C                                          | 650°C                                     | 800-1000°C<br>now, 600-<br>1000°C in 10 to<br>15 years |
| Charge Carrier                       | H⁺                                             | H⁺                                             | CO3⁼                                      | 0*                                                     |
| External Reformer<br>for CH₄ (below) | Yes                                            | Yes                                            | No                                        | No                                                     |
| Prime Cell<br>Components             | Carbon-based                                   | Graphite-based                                 | Stainless Steel                           | Ceramic                                                |
| Catalyst                             | Platinum                                       | Platinum                                       | Nickel                                    | Perovskites                                            |
| Product Water<br>Management          | Evaporative                                    | Evaporative                                    | Gaseous Product                           | Gaseous<br>Product                                     |
| Product Heat<br>Management           | Process Gas +<br>Independent<br>Cooling Medium | Process Gas +<br>Independent<br>Cooling Medium | Internal<br>Reforming +<br>Process Gas    | Internal<br>Reforming +<br>Process Gas                 |



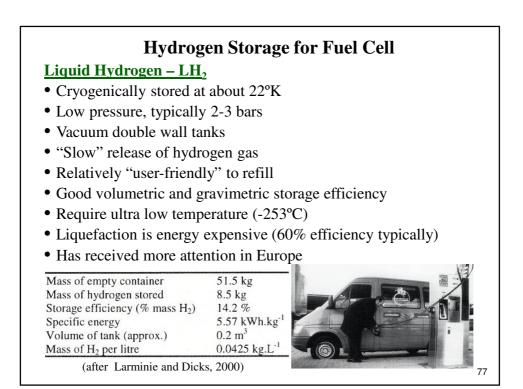


| Typical applications                                                 | Portable<br>electronics<br>equipment             | Cars, be<br>and dom<br>CHF | nestic   | Distributed powe<br>generation,<br>CHP, also buses |  |  |
|----------------------------------------------------------------------|--------------------------------------------------|----------------------------|----------|----------------------------------------------------|--|--|
| POWER                                                                | 1 10                                             | 100 1k                     | 10k 100k | 1M 10                                              |  |  |
| in Watts<br>Main<br>advantages                                       | Higher ener<br>density than bat<br>Faster rechar | teries. emiss              | ions,    | igher efficienc<br>less pollution<br>quiet         |  |  |
| Range of<br>application of<br>the different<br>types of<br>fuel cell |                                                  | PEMFC                      |          | MCFC                                               |  |  |

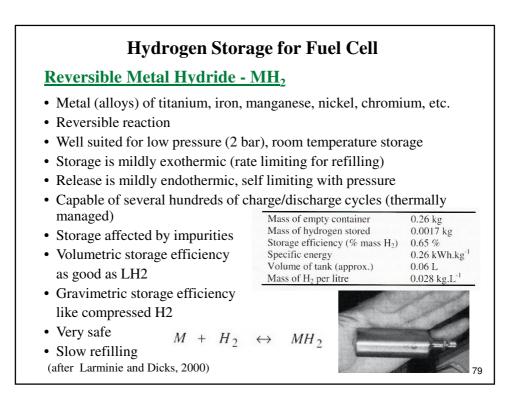

| Fuel cell type                                             |        | Opera<br>temper<br>[C                                        | rature   | Electric<br>Efficiency<br>[%] | Applications and notes |                                                                                                                                                         | notes                                                                                                           |                    |                                   |
|------------------------------------------------------------|--------|--------------------------------------------------------------|----------|-------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------|
| Alkaline (AFC)                                             |        |                                                              | 60 - 100 |                               | 50                     | Use                                                                                                                                                     | Used in space vehicles, e.g. Apollo, Shuttle.                                                                   |                    |                                   |
| Proton exchange membrane (PEMFC)<br>Direct Methanol (DMFC) |        | 60 - 120<br>20-90                                            |          | 40                            |                        | Vehicles and mobile applications, and for low<br>power CHP systems.<br>Suitable for portable electronic systems of lo<br>power, running for long times. |                                                                                                                 | ns, and for lower  |                                   |
|                                                            |        |                                                              |          | 20                            |                        |                                                                                                                                                         |                                                                                                                 | systems of low     |                                   |
| Phosphoric acid (                                          | PAFC)  |                                                              | 180 -    | 200                           | 40                     | Larg                                                                                                                                                    | Large numbers of 200-kW CHP systems i<br>Suitable for medium- to large-scale CHP<br>systems, up to MW capacity. |                    | <sup>o</sup> systems in use.      |
| Molten carbonate                                           | (MCFC) |                                                              | 600 -    | 700                           | 50 - 55                | syste                                                                                                                                                   |                                                                                                                 |                    |                                   |
| Solid oxide (SOFC                                          | C)     |                                                              | 800 - 1  | 1000                          | 50 - 55                |                                                                                                                                                         | able for al<br>i-MW.                                                                                            | Il sizes of CHP sy | stems, 2kW to                     |
| Typical<br>applications                                    |        | ble electi<br>equipmen                                       |          |                               | s, boats,<br>mestic Cl |                                                                                                                                                         |                                                                                                                 | generation         | ted power<br>n, CHP, also<br>ises |
| Power<br>In Watts                                          | 1      | 10                                                           | 100      | 1                             | k 10                   | Dk                                                                                                                                                      | 100k                                                                                                            | 1M                 | 10M                               |
| lain advantages                                            | th     | Higher energy density<br>than batteries<br>Faster recharging |          | zero emission                 |                        | ons                                                                                                                                                     | ns Less pollutio                                                                                                |                    | ollution                          |
| Dongo of                                                   |        | DMFC                                                         |          |                               | AFC                    |                                                                                                                                                         |                                                                                                                 | M                  | CFC                               |
| Range of<br>application of                                 |        |                                                              |          |                               |                        |                                                                                                                                                         |                                                                                                                 | SOFC               |                                   |

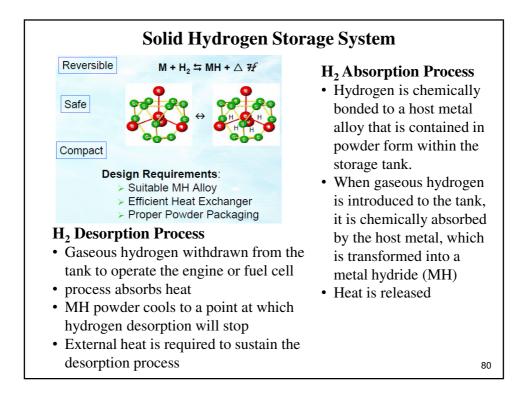
# **Fuels for Fuel Cell Systems**

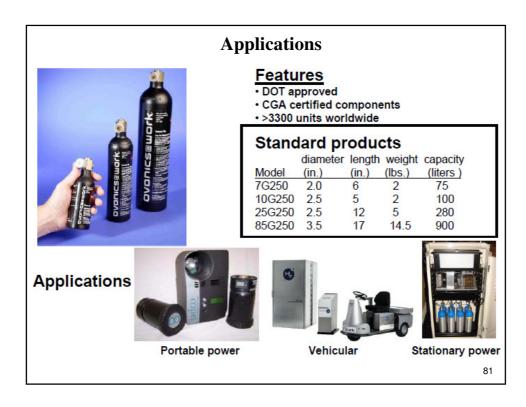
- Hydrogen
- Alcohols (methanol, ethanol, etc)
- Natural gas/gaseous hydrocarbons (methane, ethane, propane, butane, coal gas, syn-gas, etc.)
- Liquid hydrocarbons (gasoline, Diesel, kerosene, naphta, etc)
- Others (ammonia, hydrazine, etc.)

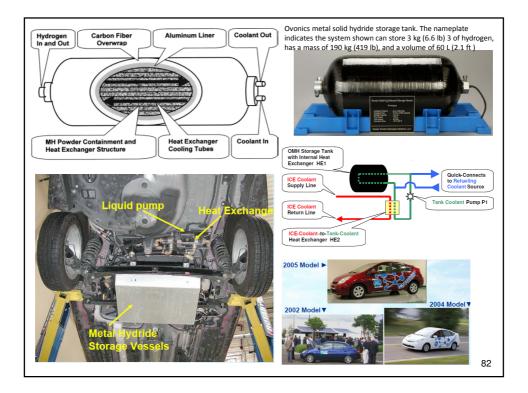

|                                         | , ,                        |                                                                                  |          |                  |                      |                      |
|-----------------------------------------|----------------------------|----------------------------------------------------------------------------------|----------|------------------|----------------------|----------------------|
|                                         | Gas species                | PEM Fuel Cell                                                                    | AFC      | PAFC             | MCFC                 | SOFC                 |
|                                         | H <sub>2</sub>             | Fuel                                                                             | Fuel     | Fuel             | Fuel                 | Fuel                 |
| Fuel Sources                            | CO                         | Poison (>10ppm)                                                                  | Poison   | Poison (>0.5%)   | Fuel *               | Fuel                 |
|                                         | $CH_4$                     | Diluent                                                                          | Diluent  | Diluent          | Diluent <sup>b</sup> | Diluent <sup>b</sup> |
| • Petroleum                             | CO, and H <sub>2</sub> O   | Diluent                                                                          | Poison   | Diluent          | Diluent              | Diluent              |
| • • • •                                 | S (as H <sub>2</sub> S and | Few studies, to                                                                  | Unknown  | Poison (>50 ppm) | Poison               | Poison               |
| <ul> <li>Natural gas</li> </ul>         | COS)                       | date                                                                             |          |                  | (>0.5 ppm)           | (>1.0 ppm)           |
| <ul><li>Coal</li><li>Bio-mass</li></ul> | b – A fuel in the inte     | than reacting as a fuel a<br>rmal reforming MCFC a<br>, is a poison for the alka | nd SOFC. |                  | use with reform      | ned fuels            |
| • Electricity (foss                     | il fuel,                   |                                                                                  |          |                  |                      |                      |
|                                         | - 1                        |                                                                                  |          |                  |                      |                      |
| nuclear, hydro, s                       | solar)                     |                                                                                  |          |                  |                      |                      |

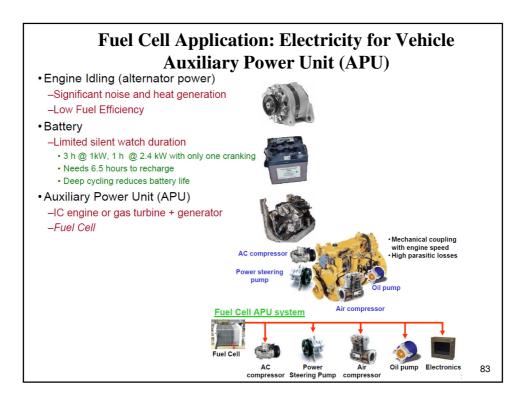
| Hydrogen Storage                                                                       |                                                                                                                                                                                                                          |                                      |                                                                                                       |                                        |       |                                           |  |  |  |  |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------|-------|-------------------------------------------|--|--|--|--|
|                                                                                        | Hydrogen Storage                                                                                                                                                                                                         |                                      |                                                                                                       |                                        |       |                                           |  |  |  |  |
| the United<br>(Targets as<br>volumetric:<br>In 2010, on<br>potential to<br>capacity, w | the United States Council for Automotive Research (USCAR) and U.S. DOE (Targets assume a 5-kg $H_2$ storage system). The ultimate goal for volumetric storage is still above the theoretical density of liquid hydrogen. |                                      |                                                                                                       |                                        |       |                                           |  |  |  |  |
|                                                                                        | Storage Parameter                                                                                                                                                                                                        | 200                                  | )5                                                                                                    | 201                                    | 0     | 2015                                      |  |  |  |  |
|                                                                                        | Gravimetric Capacity<br>(Specific energy)                                                                                                                                                                                |                                      | 1.5 kWh/kg         2.0 kWh/kg           0.045 kg H <sub>2</sub> /kg         0.060 kg H <sub>2</sub> / |                                        |       | 3.0 kWh/kg<br>0.090 kg H <sub>2</sub> /kg |  |  |  |  |
|                                                                                        | System Weight:                                                                                                                                                                                                           |                                      | 111 Kg                                                                                                |                                        | 83 Kg | 55.6 Kg                                   |  |  |  |  |
|                                                                                        | Volumetric Capacity<br>(Energy density)                                                                                                                                                                                  | 1.2 kWh/L<br>0.036 kg H <sub>2</sub> |                                                                                                       | 1.5 kWh/L<br>0.045 kg H <sub>2</sub> / |       | 2.7 kWh/L<br>0.081 kg H <sub>2</sub> /L   |  |  |  |  |
|                                                                                        | System Volume:                                                                                                                                                                                                           |                                      | 139 L                                                                                                 |                                        | 111 L | 62 L                                      |  |  |  |  |
| 1                                                                                      | Storage system cost                                                                                                                                                                                                      | \$6 /kWh                             |                                                                                                       | \$4 /kWh                               |       | \$2 /kWh                                  |  |  |  |  |
|                                                                                        | System Cost:                                                                                                                                                                                                             |                                      | \$1000                                                                                                |                                        | \$666 | \$333                                     |  |  |  |  |
|                                                                                        | Refueling rate                                                                                                                                                                                                           | .5 Kg H <sub>2</sub> /mir            | <u>ר י</u>                                                                                            | 1.5 Kg H <sub>2</sub> /mi              | in 📃  | 2.0 Kg H <sub>2</sub> /min                |  |  |  |  |
|                                                                                        |                                                                                                                                                                                                                          |                                      |                                                                                                       |                                        |       |                                           |  |  |  |  |





| ethods                     |                                            | P                               | D                   | S16              | V-L (L)              | N                       |
|----------------------------|--------------------------------------------|---------------------------------|---------------------|------------------|----------------------|-------------------------|
|                            | Name                                       | Formula                         | Percent<br>hydrogen | Specific gravity | Vol. (L)<br>to store | Notes                   |
| ompressed in gas cylinders |                                            |                                 |                     |                  | 1 kg H <sub>2</sub>  |                         |
|                            | Simple hydrides                            |                                 | 100                 | 0.07             |                      | 0.11.25200              |
| ogenic liquid              | Liquid H,<br>Lithium hydride               | H,<br>LiH                       | 100<br>12.68        | 0.07<br>0.82     | 14<br>6.5            | Cold, -252°C<br>Caustic |
| ersible metal hydrides     | Beryllium hydride                          | BeH,                            | 18.28               | 0.67             | 8.2                  | Very toxic              |
| ersible metal nyundes      | Diborane                                   | B <sub>2</sub> H <sub>6</sub>   | 21.86               | 0.417            | 11                   | Toxic                   |
| i metal hydrides           | Liquid methane                             | CH <sub>4</sub>                 | 25.13               | 0.415            | 9.6                  | Cold -175°C             |
| an metal nyunues           | Ammonia                                    | NH <sub>4</sub>                 | 17.76               | 0.817            | 6.7                  | Toxic, 100 ppm          |
| ements                     | Water<br>Sodium hydride                    | H <sub>2</sub> O<br>NaH         | 11.19<br>4.3        | 1.0              | 8.9<br>25.9          | Caustic, but chear      |
|                            | Calcium hydride                            | CaH,                            | 5.0                 | 1.9              | 11                   | causiie, but cheaj      |
| to handle                  | Aluminium hydride                          | AIH,                            | 10.8                | 1.3              | 7.1                  |                         |
|                            | Silane                                     | SiH,                            | 12.55               | 0.68             | 12                   | Toxic 0.1 ppm           |
| uire little energy to      | Potassium hydride                          | KH                              | 2.51                | 1.47             | 27.1                 | Caustic                 |
| ly hydrogen                | Titanium hydride Complex hydrides          | TiH,                            | 4.40                | 3.9              | 5.8                  |                         |
| asy to supply hydrogen     | Lithium borohydride                        | LiBH                            | 18.51               | 0.666            | 8.1                  | Mild toxicity           |
| lo suppry nyurogen         | Aluminium borohydride<br>Lithium aluminium | Al(BH <sub>i</sub> ),<br>LiAlH. | 16.91<br>10.62      | 0.545            | 11<br>10             | Mild toxicity           |
| metric storage             | hydride                                    | Eram <sub>4</sub>               | 10.02               | 0.717            | .0                   |                         |
| U                          | Hydrazine                                  | $N_2H_4$                        | 12.58               | 1.011            | 7.8                  | Toxic 10 ppm            |
| ency                       | Hydrogen absorbers                         |                                 |                     |                  |                      |                         |
| •                          | Palladium hydride<br>Titanium iron hydride | Pd,H<br>TiFeH,                  | 0.471<br>1.87       | 10.78<br>5.47    | 20<br>9.8            |                         |
| netric storage             | r namum non hydride                        | rin-en <sub>2</sub>             | 1.67                | 3.47             | 2.0                  |                         |


| Compressed Hydrogen                                                                                                                                                                                                                                                  |                                                                                |                                                                                   |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------|
| • Stored in metal cylinders at hig                                                                                                                                                                                                                                   | h pressures (340                                                               | bars [5000 psi] current                                                           | tly) |
| • Pressures increasing to 10,000                                                                                                                                                                                                                                     | -                                                                              |                                                                                   | •    |
| • Typically aluminum liner with                                                                                                                                                                                                                                      | •                                                                              | schall                                                                            |      |
| • • •                                                                                                                                                                                                                                                                |                                                                                |                                                                                   |      |
| • Low storage efficiency (both vo                                                                                                                                                                                                                                    | olumetric and gra                                                              | avimetric)                                                                        |      |
| • Limited to relatively small quant                                                                                                                                                                                                                                  | ntity to storage d                                                             | ensity:                                                                           |      |
| : A stretch to package in automo                                                                                                                                                                                                                                     | •                                                                              | •                                                                                 |      |
|                                                                                                                                                                                                                                                                      |                                                                                |                                                                                   |      |
|                                                                                                                                                                                                                                                                      | ractrictions on ni                                                             |                                                                                   |      |
| • Unlimited storage time and no                                                                                                                                                                                                                                      | resultenons on pe                                                              | iiity                                                                             |      |
| <ul> <li>Onlimited storage time and no i</li> <li>Not very "user-friendly" at refu</li> </ul>                                                                                                                                                                        |                                                                                | •                                                                                 |      |
| • Not very "user-friendly" at refu                                                                                                                                                                                                                                   | eling station due                                                              | to high pressure                                                                  | n    |
| <ul><li>Not very "user-friendly" at refu</li><li>Safety is a concern due to high</li></ul>                                                                                                                                                                           | eling station due<br>pressure (rather                                          | to high pressure                                                                  | on   |
| • Not very "user-friendly" at refu                                                                                                                                                                                                                                   | eling station due<br>pressure (rather                                          | to high pressure<br>than hydrogen explosio                                        | on   |
| <ul> <li>Not very "user-friendly" at refu</li> <li>Safety is a concern due to high<br/>risk, except in confined spaces)</li> </ul>                                                                                                                                   | eling station due<br>pressure (rather<br>2 L steel, 200 bar                    | to high pressure                                                                  | on   |
| <ul> <li>Not very "user-friendly" at refu</li> <li>Safety is a concern due to high<br/>risk, except in confined spaces)</li> </ul>                                                                                                                                   | eling station due<br>pressure (rather                                          | to high pressure<br>than hydrogen explosio                                        | on   |
| <ul> <li>Not very "user-friendly" at refu</li> <li>Safety is a concern due to high<br/>risk, except in confined spaces)</li> <li>Mass of empty cylinder<br/>Mass of hydrogen stored</li> </ul>                                                                       | eling station due<br>pressure (rather<br>2 L steel, 200 bar                    | to high pressure<br>than hydrogen explosio                                        | on   |
| <ul> <li>Not very "user-friendly" at refu</li> <li>Safety is a concern due to high<br/>risk, except in confined spaces)</li> </ul>                                                                                                                                   | eling station due<br>pressure (rather<br>2 L steel, 200 bar<br>3.0 kg          | than hydrogen explosion                                                           | on   |
| <ul> <li>Not very "user-friendly" at refu</li> <li>Safety is a concern due to high<br/>risk, except in confined spaces)</li> <li>Mass of empty cylinder<br/>Mass of hydrogen stored</li> </ul>                                                                       | 2 L steel, 200 bar<br>3.0 kg<br>0.036 kg<br>1.2 %                              | than hydrogen explosion<br>147 L composite, 300 bar<br>100 kg<br>3.1 kg<br>3.1 %  | on   |
| <ul> <li>Not very "user-friendly" at refu</li> <li>Safety is a concern due to high risk, except in confined spaces)         <ul> <li>Mass of empty cylinder Mass of hydrogen stored Storage efficiency (% mass H<sub>2</sub>)</li> </ul> </li> </ul>                 | 2 L steel, 200 bar<br>3.0 kg<br>0.036 kg<br>1.2 %<br>0.47 kWh.kg <sup>-1</sup> | 147 L composite, 300 bar<br>100 kg<br>3.1 kg<br>3.1 %<br>1.2 kWh.kg <sup>-1</sup> | on   |
| <ul> <li>Not very "user-friendly" at refu</li> <li>Safety is a concern due to high risk, except in confined spaces)         <ul> <li>Mass of empty cylinder Mass of hydrogen stored Storage efficiency (% mass H<sub>2</sub>) Specific energy</li> </ul> </li> </ul> | 2 L steel, 200 bar<br>3.0 kg<br>0.036 kg<br>1.2 %                              | than hydrogen explosion<br>147 L composite, 300 bar<br>100 kg<br>3.1 kg<br>3.1 %  | on   |





| Hydrogen Stor                                                                                                                                                                                                                                 | age for Fuel Cell                                                                                                                                                                                                  |                                                                                                        |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|
| <u>Alkali Metal Hydride</u>                                                                                                                                                                                                                   |                                                                                                                                                                                                                    |                                                                                                        |  |  |  |  |
| • Calcium or sodium hydride typically                                                                                                                                                                                                         |                                                                                                                                                                                                                    |                                                                                                        |  |  |  |  |
| <ul> <li>React with water to produce hy</li> <li>Not easily reversible</li> <li>Liquid hydroxide by-product (</li> <li>Requires large excess water as</li> <li>Atmospheric pressure and tem</li> <li>Storage efficiency comparable</li> </ul> | $NaH + H_2O \rightarrow NaOH$ $CaH_2 + 2H_2O \rightarrow Ca(C)$ caustic) hydroxides are hydrop perature storage                                                                                                    | $(2H)_2 + 2H_2$                                                                                        |  |  |  |  |
| <ul> <li>Safe except caustic liquid</li> <li>"Refilling" means<br/>disposal of by-product and<br/>replenishment</li> </ul>                                                                                                                    | Mass of container and all materials<br>Mass of hydrogen stored<br>Storage efficiency ( $\%$ mass H2)<br>Specific energy<br>Volume of tank (approx.)<br>Mass of H <sub>2</sub> per litre<br>(after Larminie and Dic | 45 kg<br>1.0 kg<br>2.2 %<br>0.87 kWh.kg <sup>-1</sup><br>50 L<br>0.020 kg.L <sup>-1</sup><br>ks, 2000) |  |  |  |  |
| – Not desirable for automotive                                                                                                                                                                                                                |                                                                                                                                                                                                                    | 78                                                                                                     |  |  |  |  |

