2017 Summer Professional Development Course Advanced Automotive Technology

Topic 3:

Lightweight Materials for Automotive Applications

July 10 ~ 11, 2017

Instructor: Dr. Gene Liao

Wayne State University geneliao@wayne.edu

Center for Advanced Automotive Technology

Y. Gene Liao

Introduction

- Professor and Director of Electric-drive Vehicle Engineering & Alternative Energy Technology; Engineering Technology, Wayne State University.
- Doctor of Engineering, University of Michigan-Ann Arbor, 1999.
- Worked as a practicing engineer for over 16 years in automotive sector.
- Consultant to: ASRC Primus/TARDEC, 2007-present.
- University projects: NSF, DOE, DOL, DOC, 2003-present.

Electric Propulsion Integration Lab - HIL (Hardware-In-the-Loop)

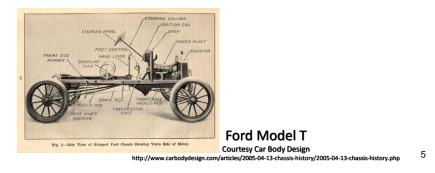
2

Full HEV project with TARDEC

3

4

Outline


- Background and Motivation
- Weight Effect on Fuel Consumption
- Light Weighting Material Implementations
 - ✓ Lightweight Design
 - ✓ HSS, AHSS
 - ✓ Aluminum
 - ✓ Magnesium
 - ✓ Composites
- Multi-Material Enabling
- Joining Processes Current and Emerging
- CAE Tools and Methods for Material Choices
- Summary

Background and Motivation

- Automotive industry traditionally has reduced weight primarily by downsizing. Today, the strategy of downsizing vehicle has reached its limits.
- Automotive OEMs are facing substantial increases in Corporate Average Fuel Economy requirements in the US. Also the fuel economy requirements are increasing globally.
- Significant vehicle light weighing is needed, and appropriate use of a variety of lightweight materials will be necessary to meet the mass targets.
- ✓ OEMs are learning how to cost effectively weld, rivet, form and cast lightweight vehicles on a global platform.

Some Background...

- Cars at first were built entirely of wood, and later of wood frames with steel body panels.
- In the early 1900's, the idea of a body-on-frame design came about.
- These vehicles had a load-bearing chassis that supported all the mechanical parts and a body usual made of steel.



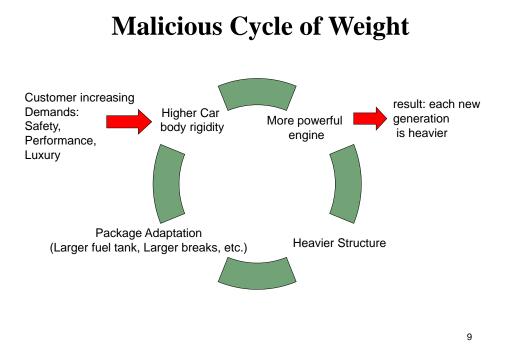
Moving Forward...

- Today, most smaller vehicles such as small SUV's and sedans use a unibody (or monocoque) construction.
- Heavy-duty vehicles like trucks and busses still use the idea of body-on-frame.
- Regardless of the construction technique, steel is still the predominant material used in automotive frames.

A Quick Comparison

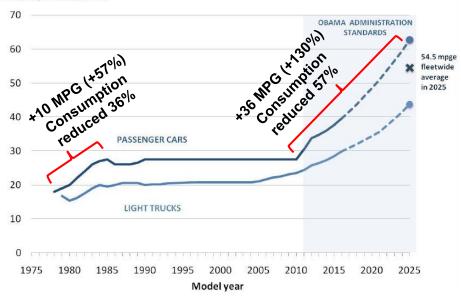
Monocoques

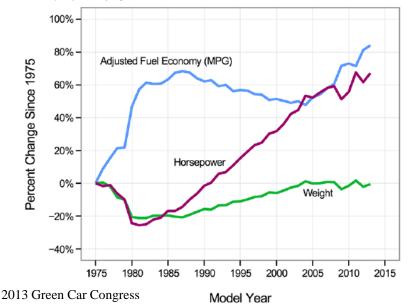
Typical Ladder Frame



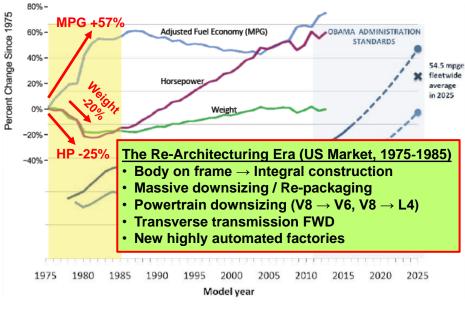
7

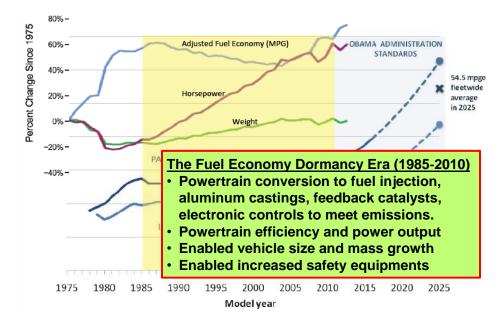
Lightweight Necessity

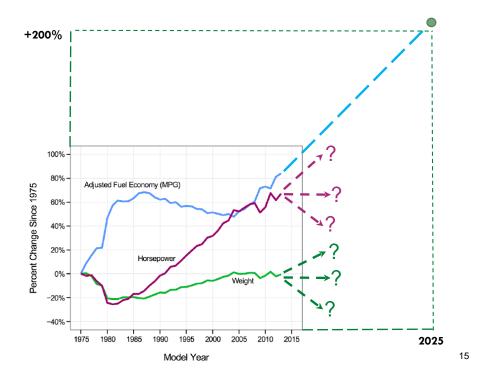

Medium sized vehicles are almost twice as heavy as 20 years ago.

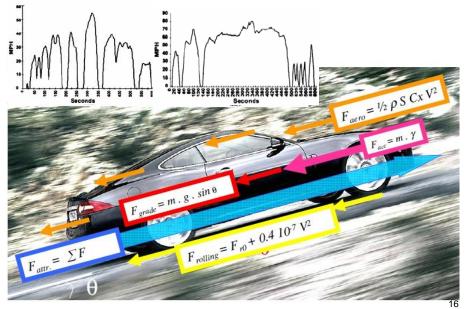

Value x Weight

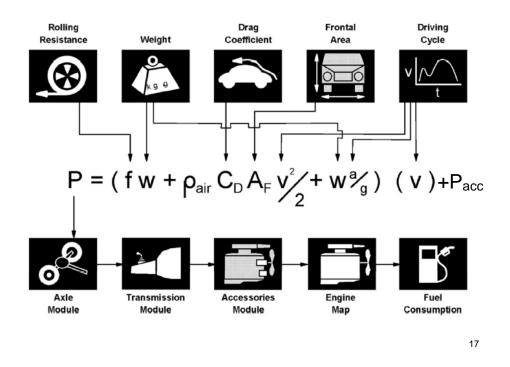
- ✓ From the manufacturers point of view, adding weight is a way to add value - to make cars bigger and more comfortable and more powerful and raise the profit margins.
- ✓ "Small-vehicles small profits".
- ✓ We argue that to add value the increase in weight must not occur.




miles per gallon equivalent


Change in Adjusted fuel economy, weight, and horsepower MY1975---2013

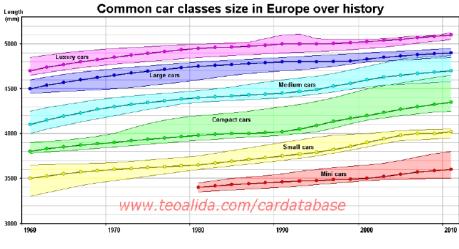

MY1978-2011 figures are NHTSA Corporate Average Fuel Economy (CAFE) standards in miles per gallon. Standards for MY2012-2025 are EPA greenhouse gas emission standards in miles per gallon equivalent, incorporating air conditioning improvements. Dashed lines denote that standards for MY2017-2025 reflect percentage increases in Notice of Interest.



Weight Effect on Fuel Consumption

Uses and Losses of Fuel Energy in a Vehicle

Estimate of city and Highway usage (Highway figures in parentheses 13% 100% Aerodynamic Drive Drag Standby Accessories 3% (11%) 17% (4%) 2% (2%) 19% Rolling Driveline Fuel tank Engine Resistance 13% (20%) 19% (25%) 100% (100%) 4% (7%) Engine Loss Driveline Losses Braking Wheels 62% (69%) 6% (5%) 6% (2%) Where is the Mass involved?


WardsAuto Annual Survey of Industry Engineers on Fuel Economy Strategies

- Question: What technology is your company focused on to help the industry meet 2025 fuel economy standards (multiple answers permitted)?
 - > 49%, light weighting
 - > 39%, engine efficiency
 - > 26%, vehicle electrification
 - > 11%, downsizing
- For the 2011 survey, engine efficiency was the area of largest focus.

Source: 2014 WardsAuto, DuPont Automotive Trends Benchmark Study

19

Trend of Historical Vehicle Size Increases (Europe)

Example of the Old vs New Fiat 500

21

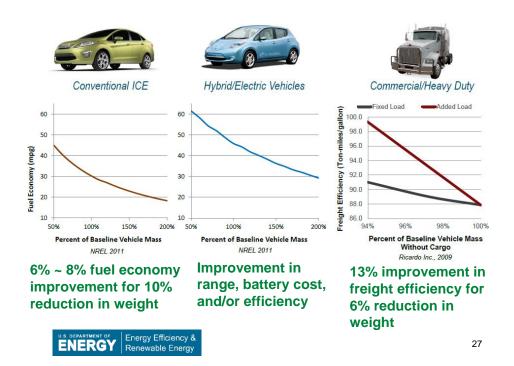
How Does Mass Reduction Achieve Fuel Economy Savings?

- Less energy required to accelerate the vehicle (F = ma)
- Less rolling resistance at speed
- Light weighting begets light weighting:
 - ✓ Smaller powertrains
 - Lighter chassis and brake components
 - ✓ Smaller gas tanks
 - Smaller wheels and tires

23

Weight Facts

- **250 pound** of weight savings = 1 MPG savings
- Weight breakdown of a vehicle is 35% body, 34% chassis, 27% powertrain, and 4% other
- Aluminum can save 50% weight
- Magnesium can save 60% weight
- Glass fiber composite can save 25% weight
- Carbon fiber composite can save 60% weight

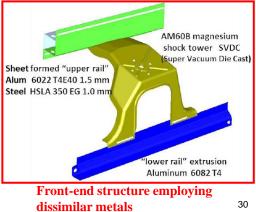

	v	v \0	/
Material	d	Material	d
Air	0.001	Aluminum	2.7
Water	1.0	Titanium	4.5
Plastics	1.1	Zinc	7.1
Carbon fiber composite	1.3	Iron	7.2
Glass fiber composite	1.8	Steel	7.9
Carbon fiber	1.8	Nickel	8.8
Magnesium	1.8	Copper	8.9
Glass Fiber	2.5	Lead	11.3

Materials Rank by Density (gm/cc)

Materials Rank by Cost

Material	Cost \$/lb
Iron	0.27
Steel	0.30
SMC	0.80
Aluminum casting	0.70
Plastics	0.90
Magnesium	1.2
Glass fiber composite	1.4
Aluminum Sheet	1.2
Carbon fiber composites	6.0

25

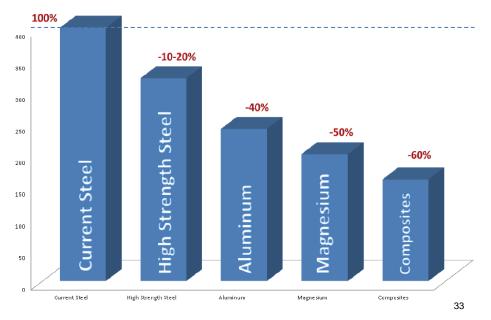

Light Weighting Material Implementations

• Material Independent Lightweighting

• Steel

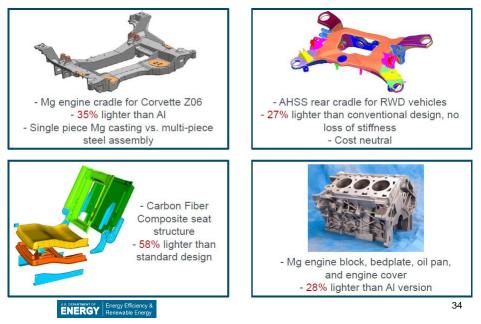
✓ Press Hardened Steel (PHS), Gen-3 High Strength Steel (HSS)

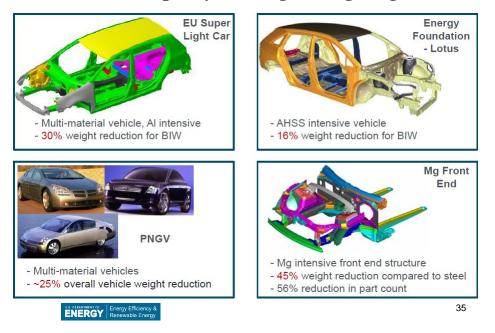
- Aluminum
 - ✓ Joining
 - ✓ Cost
 - ✓ Alternative Forming
 - ✓ "High Strength" sheet
- Magnesium
 - ✓ Die Casting
 - ✓ Sheet
- Composites
 - ✓ Closures
 - ✓ CF structure and closure


Automotive Lightweight Solutions

- Lightweight Materials
 ✓ Material designed to have the best-in-class weight
- Alternative Lightweight Design
 - ✓ Component engineered to use lighter material and innovative design to replace traditional material
- Technology enabling reduced material usage
 - Technology which facilitates and allows for reduced material usage such as reduced sheet metal thickness or elimination of existing component without sacrificing functionality
- Technologies enabling lightweight vehicle system
 - Technology which facilitates the joining of lightweight materials such as aluminum to aluminum, aluminum to CFRP, steel to CFRP and other material combinations

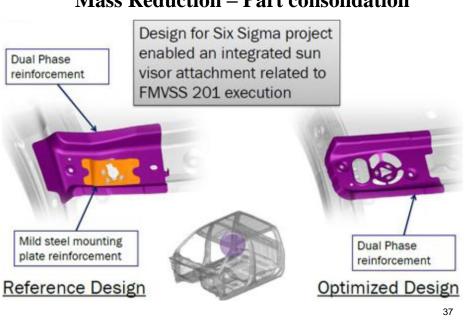
31



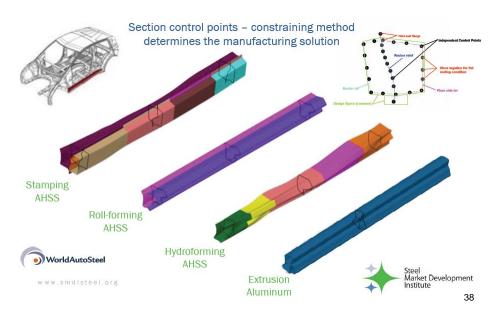

Lightweight Automotive Materials

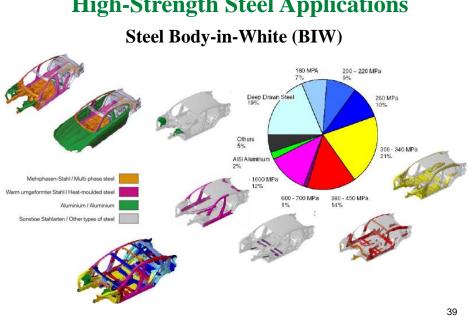
Material Weight Reduction Potential

Example Component Light Weighting



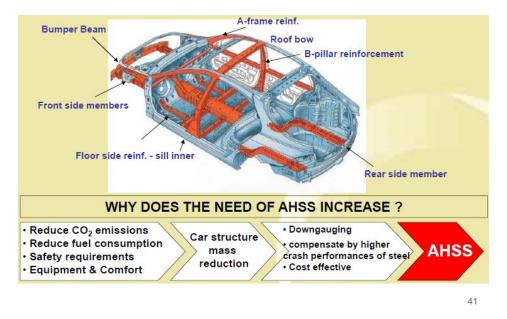
Example System Light Weighting


Efficient Material Utilization



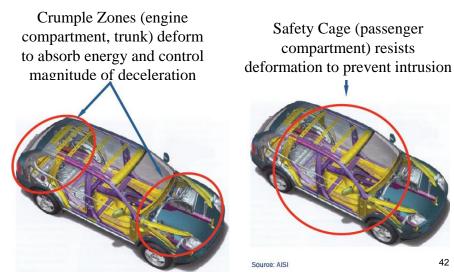
Mass Reduction – Part consolidation

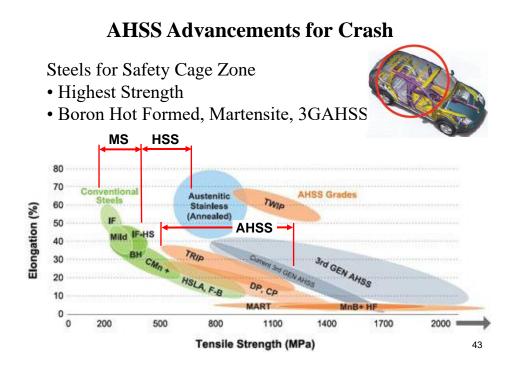
Mass Reduction Through Subsystem Optimization



High-Strength Steel Applications

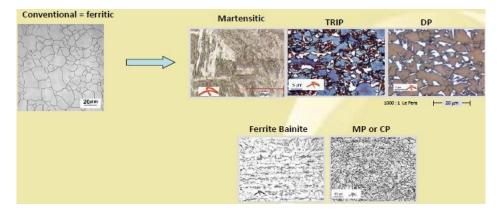
Automotive Steel Families

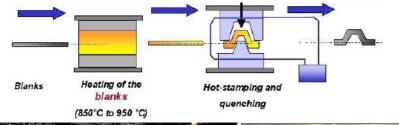

Family	Quality	AM offer	Eu Norm	Example of application	
Drawing	DC01- DC07	ArcelorMittal 01-07 ArcelorMittal 51-57	EN10111 EN10130 EN10152 EN10327	Bodyside, roof, floor, hood panels, crossmembers	
High Strength steels	IFHSS	IF180 – IF300	EN10268	Door, hood, decklid outer panels	
Steels	BH	180BH – 300BH	EN10292 EN10152	Members, crossmembers	
-	Rephosphorized	H220 – H300	EN10149	í.	
	Isotropic	E220i – E260i			
	HSLA	CR HSLA 260 - 420 HR HSLA 320 -550			
Advanced High strength steels	Dual Phase Complex Phase TRIP Martensitic	DP450 -1180 DP HY and HHE TRIP 690 – 780 MS1200	EN10336 prEN10338	A, B, C Pillar R/F Member R/F Bumper, door beams Rocker panel	
Press hardened steels	22MnB5 USIBOR	22MnB5 USIBOR1500AS		A Pillar, member, bumper beam	
Composite steels	Vibration damping structural	Quietsteel smoosteel		Dash panel, engine cover, oil pan	



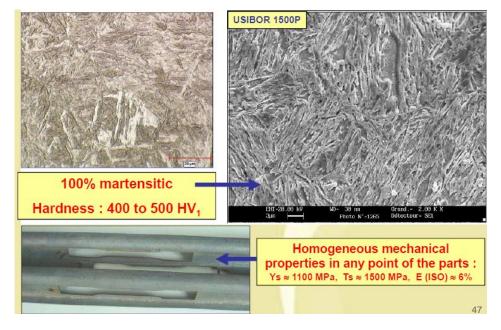
AHSS: Dedicated to Structural Parts

Advanced High-Strength Steel (AHSS) Advancements for Crash

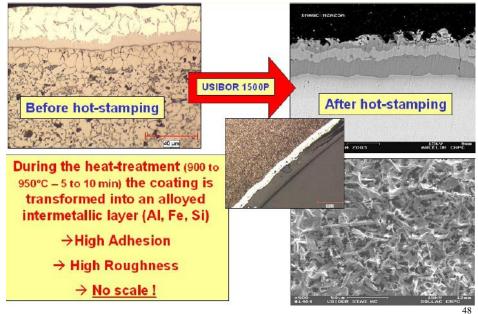

Crashworthiness Fundamentals - Two Key Zones

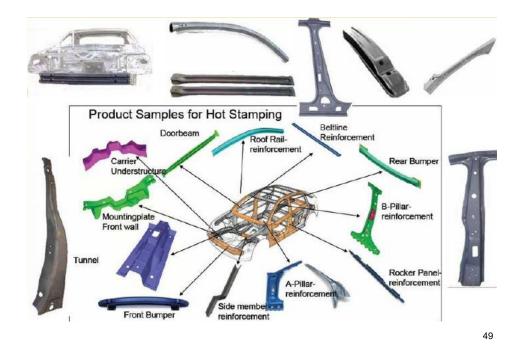

AHSS = Multiphase Steels

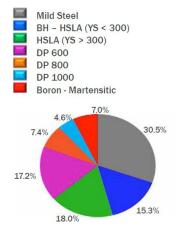

Strengthening by quenching generated hard phases: martensite, bainite, retained austenite

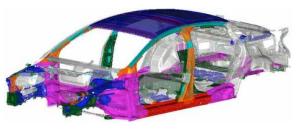


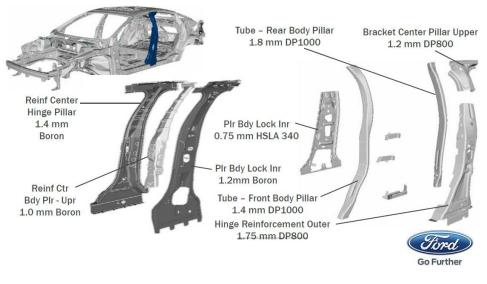
AHSS = produced by conventional process

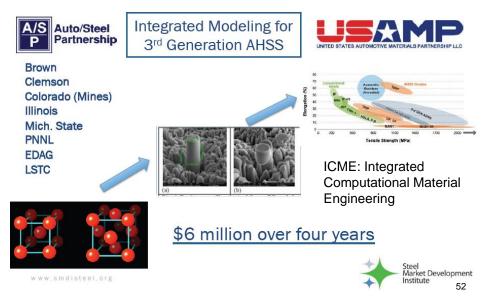


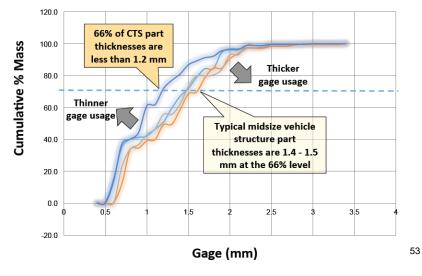



Metallurgical Structure after Hot-stamping


AlSi Coating after Hot-stamping


Material - BIW

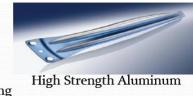

Average Yield Strength = 348 MPa



DOE Funded ICME Project ~ Integrated Computational Materials Engineering

General Motors Cadillac CTS: '3G' Approach

- Gage
- Grade (Material)
- Geometry, CAE Tools and Methods


Aluminum Applications

Front Suspension Casting

Bumper Housing Casting

Side Impact Beam

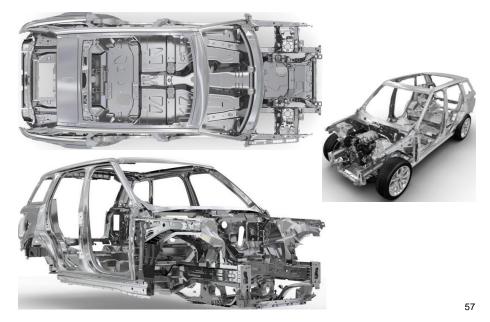
Crash Box

Seat Frame

55

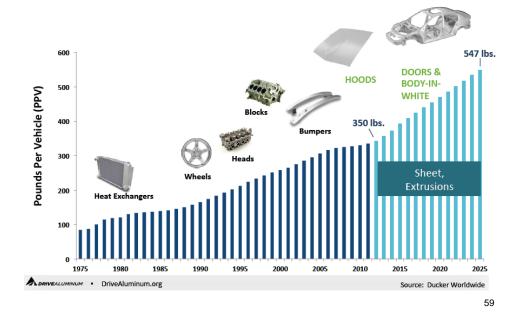
The Move to Aluminum

- The first production vehicle to move to an Al frame was the Audi A8 in 1994.
- This allowed Audi to make their full-size car lighter than the competitions (BMW, Mercedes,Lexus...), thus giving them the edge in performance & handling.
- This comes at a price premium though, for instance compared to a Lexus LS460 (Steel framed) which costs around \$65,000. The A8 starts at \$75,000

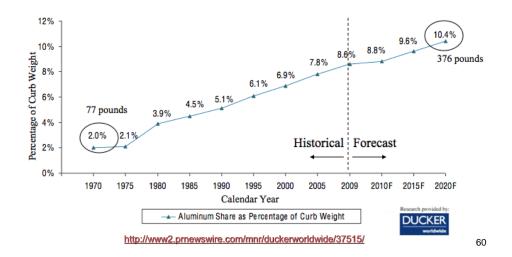

Audi A8

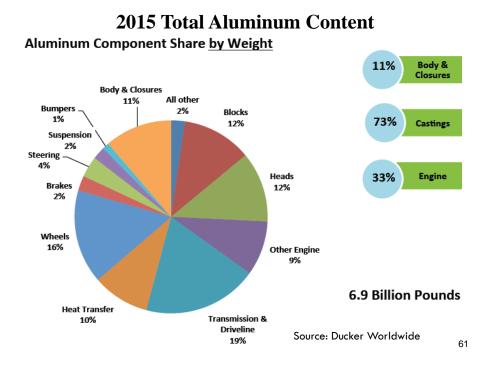
Lexus LS460

56

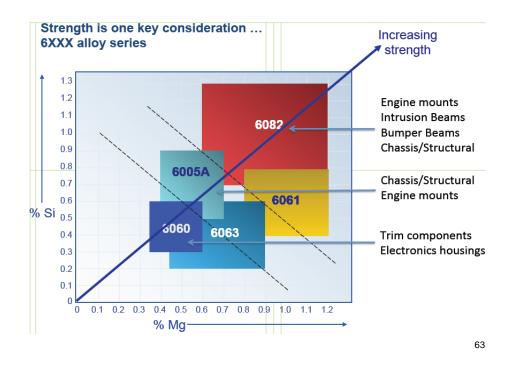

Range Rover Sport

Ford Takes a Leap: the New 2015 All Aluminum F150 Pickup Body

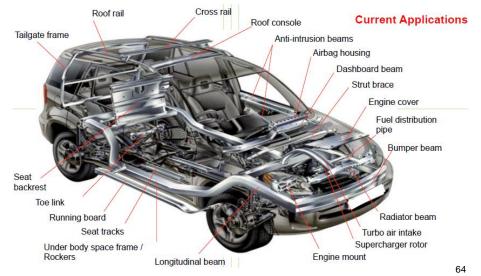



The Ford F150 truck is the first high volume application of LWV technology in the USA Ford worked with aluminium suppliers & technology providers to ensure capacity is in place Further Capacity will be put in place in the USA as further models require LWV technology Shifts the aluminium needle, but still less than 5% of total Auto Body Sheet requirement

50 Years of Automo8ve Aluminum Growth



Aluminum Joining Technology Opportunities


- CAE models for all welding technologies with improved representation of heat affected zones and weld nuggets and improved statistical predictions for failure.
- Steel to aluminum fusion welding
- Adhesive bonding with AHSS and composites
- Common / flexible solutions for multiple materials and processes

62

Application of Aluminum Extrusion to Light Weighting


While most growth is projected for chassis/body applications, extrusions are being used in virtually all vehicle systems.

Cases of Aluminum Extrusion Applications

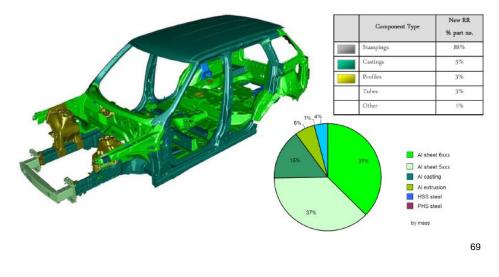
Aluminum Castings

Continuous Casting

- Strip cast Al sheet implemented on narrow width low Mg 5XXX series alloys
- Demonstration trials complete with higher Mg alloys and 6xxx series alloys.
- Need to explore new alloys enabled by faster cooling rates.
- Need to explore economic opportunity

Improve Formability

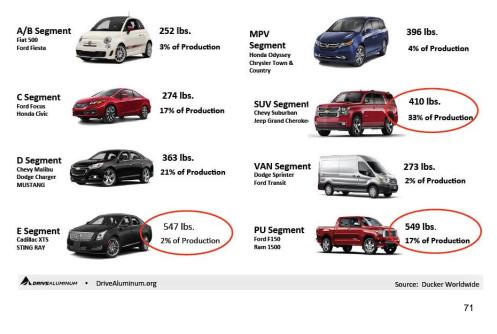
- Retrogression heat treatment
- Warm forming
- Super plastic forming
- Quick plastic forming
- Fast
- Hydroforming
- Perform annealing
- Electromagnetic forming


67

Aluminum Intensive Vehicles

Range Rover Sport

Aluminum body, weight saving 300 kg vs. previous model 39% = 180 kg lighter than the steel equivalent



Cars Utilizing Al Frames

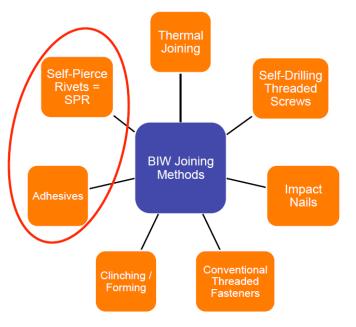
Audi A8 Jaguar XJ Corvette Z06 Honda NSX Audi A2 Audi R8

2015 Aluminum Content by Segment

Weight

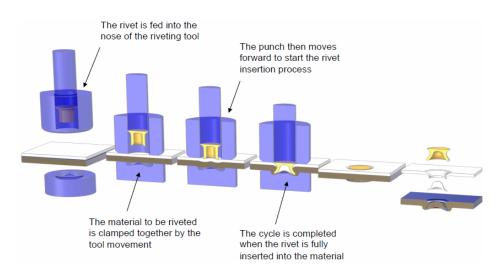
• The most obvious advantage to using aluminum in place of steel in cars is aluminum weighs less.

Safety

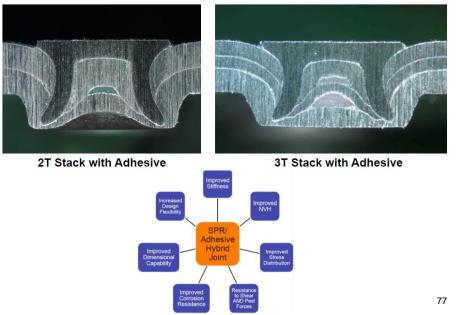

- Not too many safety tests have been performed on Al framed vehicles due to their usually higher price.
- However, the Audi A2 is an inexpensive compact car that has been tested, and received overall favorable reviews compared to its steel bodies counterparts.

Some other advantages...

- There are some manufacturing methods that can only be done with aluminum, such as extrusions.
- These extrusions allows the Al Space Frame to have about half the amount of parts as a traditional steel monocoque.
- Because of all this, Al is already a cheaper material to use for low volume production cars (under 100,000 units a year or so).


A Few Other Facts...

- > Today, the average car contains about 200 pounds of aluminum parts.
- > Aluminum space frames (like that from Audi), contain fewer parts and fewer connection nodes, which helps keep production costs lower.



Mainstream Methods to Join Aluminum BIWs

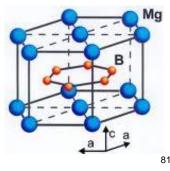
Self-Pierce Riveting Process

Courtesy of Henrob Corp., USA

Self-pierce Rivets and Adhesive = Hybrid Joint

Aluminum Sustainability

- Lower cost material production
 - ✓ Continuous casting
 - ✓ Coordinate with mill capacity upgrades
- Facilitate closed loop recycling
 ✓ Industry purity commonality
 ✓ Uni-alloy
- Higher strength alloys
 ✓ > 500 MPa with standard processing
- Design with aluminum
- Improved formability or forming processes
- CAE models for materials and joints



Magnesium Applications

- New interest in magnesium has been recently aroused due to the expansion of use of magnesium alloys in the 1990^s and, especially, due to an appearance of high-strength magnesium matrix composites as lightweight advanced structural materials for automotive and aerospace.
- Magnesium alloys are considered as possible replacements for aluminum, plastics, and steels, primarily because of their higher ductility, greater toughness, and better castability.
- Production of magnesium almost tripled last decade, and the world production capacity reached 515,000 tons per year in 2009.

Characterization of Base Magnesium

- Magnesium is the eighth most abundant element and constitutes about 2% of the Earth's crust, and it is the third most plentiful element dissolved in seawater.
- Although magnesium is found in over 60 minerals, only dolomite, magnesite, brucite, carnallite, and olivine are of commercial importance.
- Magnesium and other magnesium compounds are also produced from seawater, well and lake brines and bitterns.

- Magnesium is the lightest and one of the cheapest structural metals.
- Lighter than aluminum (only 2/3 of aluminum and 1/3 of titanium specific weights), better in heat dissipation and heat transfer due to high thermal conductivity of 51 W/m·K, and exhibit excellent ability in shielding electromagnetic interruption.
- Low density, ~1.75 g/cm3, in combination with relatively a high tensile strength of 228–290 MPa, heat resistance up to (450°C), and oxidation resistance up to 500°C make magnesium alloys attractive for various structures in the automotive industries.
- Especially attractive for various aerospace industries, as well as in textile and printing machines where lightweight magnesium parts are used to minimize inertial forces at high speed.
- Recyclable
- the surface of magnesium alloys should be protected because they corrode easily when exposed to atmosphere.

- Mechanical properties (especially plasticity) of magnesium alloys depend on the fabrication parameters and the testing temperature. For example, a considerable change in mechanical properties was observed for Alloy AZ31 fabricated by casting, extrusion, and rolling.
- The strength weakening is accompanied by a remarkable increase in ductility. The elongation increased from 21.5% to 66.5% as the test temperature changed from RT to 250°C.
- Magnesium alloys with reduced aluminum content AM60, AM50, and AM20 are suitable for applications requiring improved fracture toughness. However, the reduction in aluminum results in a slight decrease in strength for AM alloys.
- Alloys AS41, AS21, and AE42 are employed for applications requiring long-term exposure at temperatures above 120°C and creep resistance.

83

Magnesium Properties

- Lightest structural metal (33% lighter than aluminum)
- Highest strength to weight ratio of light metals
- Better machinability than aluminum

٠	100%	recycl	lable
---	------	--------	-------

Material	Mass savings (% of vehicle)	Annual fuel savings (L/vehicle/yr)	Total energy savings (Q/yr)		
AI	33%	328	2.58		
Mg	41%	407	3.21		
Ti	19%	188	1.48		

Material	Strength to weight ratio 0.04 - 0.06 0.11 0.13 0.12		
Steel			
AI			
Mg			
Ti			

Assumptions:

0.0036L/km fuel reduction per 100 kg reduced vehicle mass

- 20,000km traveled/car/yr (~12,500 mi)
- 239 million cars on the road (US 2012)
- 5MJ/L energy content of gasoline
- All steel replaced by light metal (equal bending stiffness/strength basis)

Magnesium Alloys Utilization (Mg content averaging 95%)

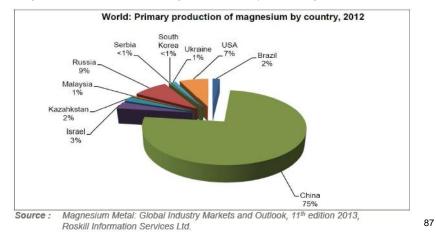
Magnesium sheet

- ✓ Significant R&D and industrial runs have been done successfully in the last years
- ✓ Mg sheet fabrication processes are mature
- ✓ Mg sheet consumption is forecast to increase sharply

Magnesium casting

 Magnesium remains a light metal of choice for cast parts, capable of thinner wall castings, and being much less aggressive on metal moulds.

85


Magnesium in Aluminum

- \bullet Aluminum Alloys: Mg content from 0,15% to 10 %
- More non-ferrous lightweight metal used
 more Mg consumed
- Non-ferrous light metals are the most promising solution for OEMs to meet the stringent fuel economy standards
 - ✓ Lighter and durable material
 - ✓ Infinite recycling capacity, for almost any mix of alloys.

Magnesium Production - Primary Metal

Primary production reached 905K MT in 2012

- Chinese Mg industry is still largely fragmented, where small plant production accounts for 33% of total Chinese output
- Mg is now listed as a strategic material by the US government

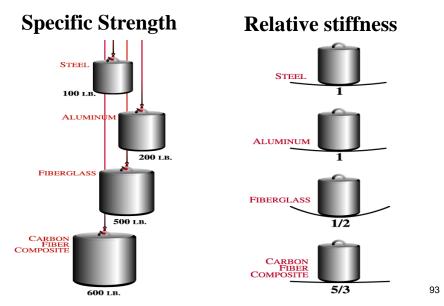
Magnesium Die Casting on Corvette

Potential Growth of Mg Closures

High Volume Integration : 2014 Ford Mondeo Lifegate / Hatchback

Magnesium Sustainability

- Corrosion, Corrosion, Corrosion
- Innovative design to consolidate parts
- Room temperature formability or high volume forming process.
- Higher strength alloys
 - > 500 MPa with standard processing
- CAE models for materials and joints
- Lower cost raw materials



<image><image><image><image><image><image>

Composites Applications

Specfic Tensile Properties of Polymer Matrix Composites **Continuous Uni**directional Carbon Composites Specific Modulus (x10⁸ in.) **Glass & Carbon** LFT & Continuous **Other Fibers Varying Fiber Orientations** LFT Carbon Composites Metals Continuous Uni-directional LFT Glass **Glass Composites** Composites lastics 3 Specific Strength (x10⁶ in.)

CARBON FIBERS –

The 21st Century Material

Thermoplastic Composites

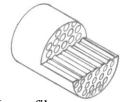
Benefits

Unique properties Vibration dampening Light weight Potential for low cost Shelf life Recyclable Durability	Limitations Cost Materials Manufacturing Tooling Design know-how Manufacturing know-how			
Durability Fatigue	know-how Use temperature			
Corrosion				
Toughness				

Many Polymer Options	<u>Many Property Options</u>
Polyethylenes	ultimate strain > 100%
Polypropylenes	no microcracking
Nylons	no delamination
Polycarbonates	dampening
Acrylics	no water uptake
Polyesters Polyimides	low dielectric properties melt formable
Polysulfones	weldable
Polyketones	elastomeric - plastic -
Polyurethanes	elastic behavior
the list continues	the list continues

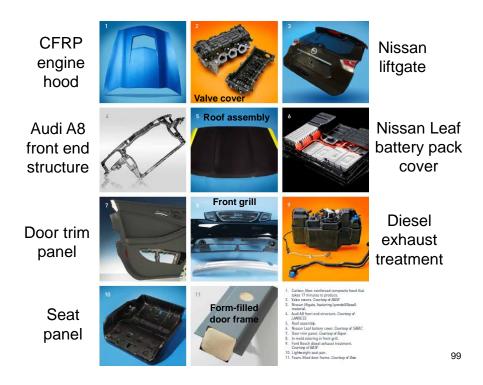
Thermoplastic Composites

- Properties are fiber dominated
- Oriented long or continuous fiber reinforcement
- High volume fiber fraction (up to 65% by volume) Key benefits:
 - Reducing thermal limitations (e.g. creep) caused by the TP matrix system
 - Reducing costs and weight and retaining toughness, formability, weldability, short cycle times, recyclability benefits of the thermoplastic matrix.

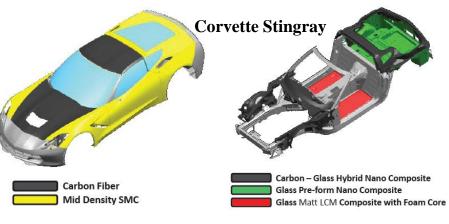

Commercial Materials

- GMT (Glass Mat Reinforced Thermoplastics)
- Pultruded Products
 - LFT (Long Fiber Reinforced Thermoplastics)
 - CFT (Continuous Fiber Reinforced Thermopastics)
- Wire coated products
- Commingled fibers
- Powder coated materials
- Film sticking
- Slurry processes

Short Fiber, Long Fiber and Continuous Fiber Composites


Typical short fiber thermoplastic material, granules with fiber length of approx. 2 to 4 mm, resulting fiber length in a part of approx. 0.4 mm

Long fiber thermoplastic material, pellets of 1/2" and 1 " fiber length, resulting fiber length in a part of approx. 4-6 mm in injection molding and approx. 20 mm in compression molding



Continuous reinforced thermoplastic material, tape used for woven sheets (thermoforming), filament winding or pultrusion

Some Body in Polymers Vehicle Concepts

Camaro ZL1 Hood Scoop

Vehicles with Reinforced Carbon Fibers

Mercedes McLaren

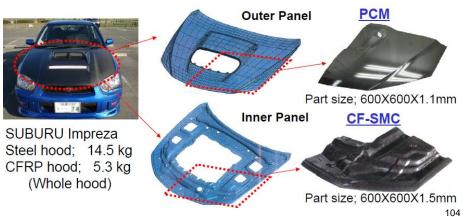
Chevy Corvette

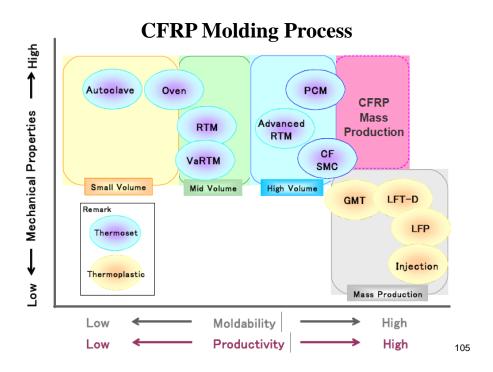
Aston Martin DBS

Bugatti Veyron

McLaren MP12

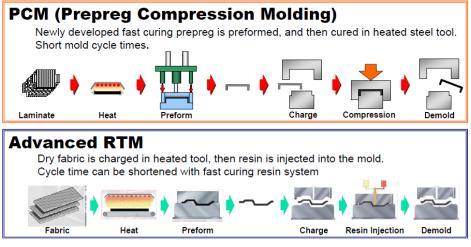
Riversimple

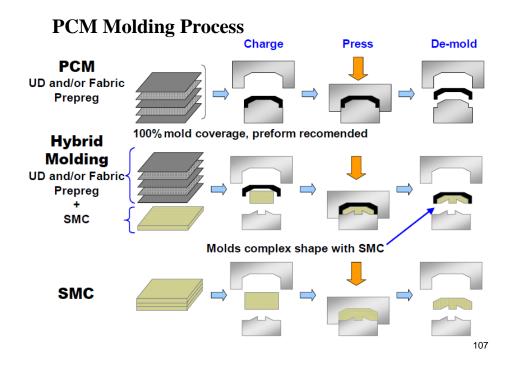



Navistar Defense Mine-Resistant-Ambush-Protected (MRAP) Vehicle

<caption><image><image><image><image><image>

Engine Hood Model Part Development

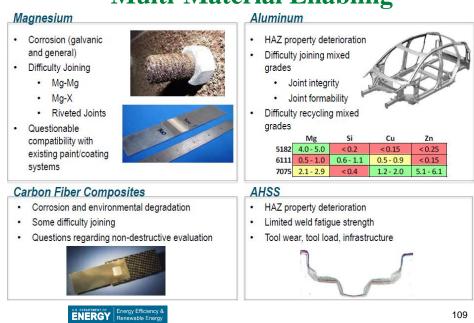

- A quarter part of engine hood was developed to demonstrate feasibility of PCM body panels.
 - PCM outer and CF-SMC inner panels were bonded to produce a body panel structure consisting of two parts.
 - CFRP engine hood is 63% lighter than steel hood.



High Cycle CFRP Molding Process

PCM has a potential for CFRP mass production

CFRP - Carbon Fiber Reinforced Polymer SMC - Sheet Molding Composites MDI - Methylene Diphenyl Diisocyanate



Composite Sustainability for Body/Closures

- Painting and repair solution
- Lower cost fiber production.
- Higher volume molding processes.
- Faster curing resins which don't trap gas / defects
- Improved forming process / cycle time.
- Damage detection and prediction.
- Increased ductility during deformation
 / crash
- Material models for defect / failure prediction

Multi-Material Enabling

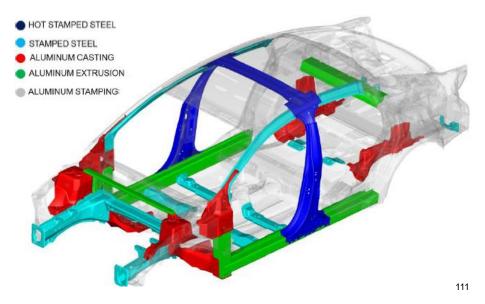
Key Material Properties to Know

Steel

- Stamping
- Welding
- Corrosion
- Easy repair

Aluminum

- Extruding
- Riveting
- No Corrosion
- Difficult to repair

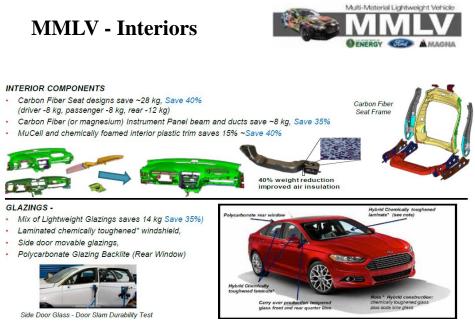

Magnesium

- Die casting
- Bolting
- Sensitive to heat
- Difficult to repair
 - - Difficult to
- Bag. molding

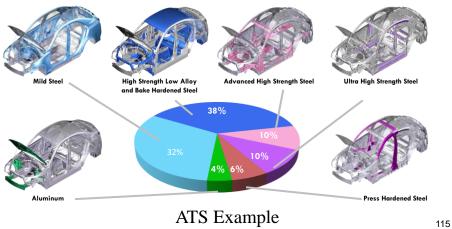
Carbon Fiber

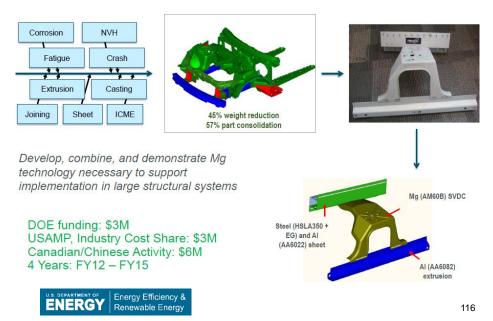
- Bonding
- Breaks during crash
 - repair

Multi-Material Lightweight Vehicle (MMLV) – Mach-I & II BIW Vehma International and Ford Motor Company, 2013/2014


Multi-Material Lightweight Vehicle

pump cover

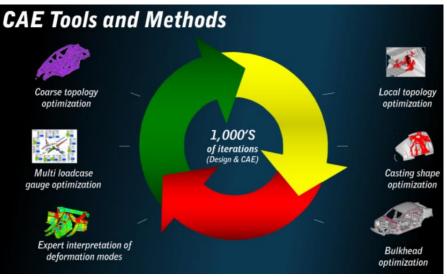

MMLV - Chassis



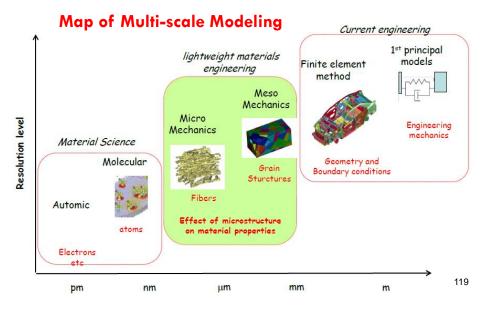
Multiple Materials In Body-In-White

Material Distribution as a Percent of BIW Mass

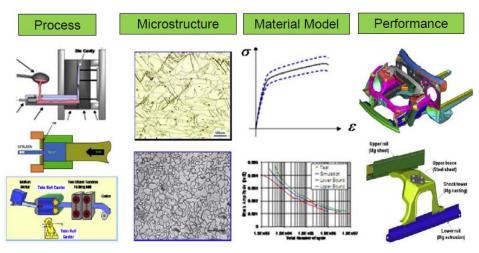
Magnesium Intensive Vehicle Front End



<text>


Alu + Carbon fiber

117


Enabling Computer-aided Engineering (CAE) Can Limit Material Choices

CAE analysis and simulation methods for modeling of lightweight materials

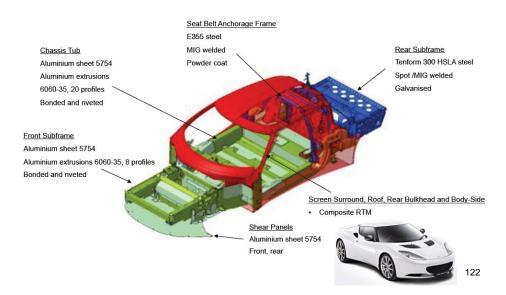
Magnesium: Multi-scale Modeling Approach

Lou, A., Journal of Magnesium and Alloys, 1/2013, pp. 2-22

ICME: Integrated Computational Material Engineering

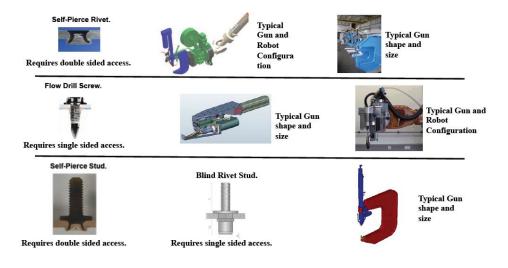
Joining Processes - Current and Emerging

- RSW
- RPW
- Clinching
- Mechanical fastening
- Laser welding
- Continuous resistance welding
- Friction stir welding
- Friction spot joining
- Bonding (structural adhesives)
- Riveting
- EMP joining
- Other



121

Production Multi-Material Body Structure: Lotus Evora

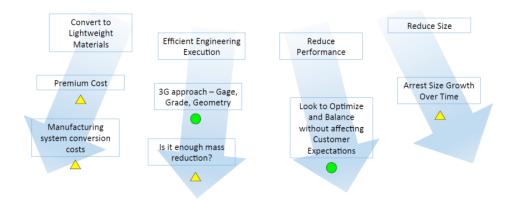


Assemblies of Advanced and Multiple Materials Complicate Joining

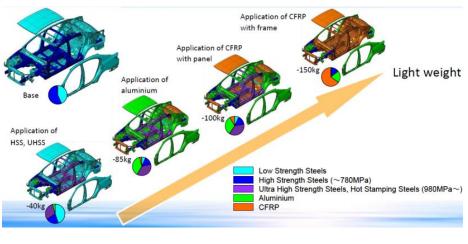
Joining technology O=Candidates to use/develop in Toyota			LSS: Low Strength Steels HSS: High Strength Steels (~780MPa) USS: Ultra High Strength Steels , Hot Stamping Steels (980MPa~) AL: Aluminum				
Combination of materials	SPR Self Piercing Rivet	FDS Flow Drill Screw	FSW Friction Stir Welding	FSJ Friction Spot Joining	LSW Laser Screw Welding	adhesive	
Steel x Steel					0	0	
AL x AL	0	0	0		0	0	
Steel (LSS,HSS) × AL	0	0	0	0		0	
Steel(UHSS) × AL			0	0		0	
AL x CFRP(Random)	0			0		0	
Steel (UHSS) xCFRP(Random)	0			0		0	
CFRP x CFRP	0			0		0	

123

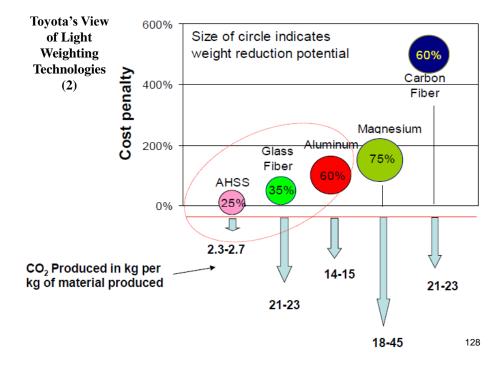
Typical Rivet Types



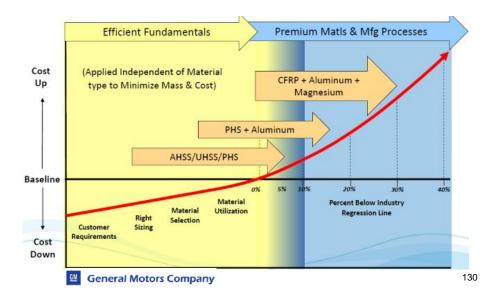
Summary


- Automobiles will be getting significantly lighter over the next 10 years.
- Good engineering and design cannot account for all mass reduction necessary.
- Appropriate use of a variety of lightweight materials will be necessary to meet the mass targets.
- Lightweight materials community needs to focus on:
 - Improving existing materials and forming processes.
 - Developing new materials with improved properties.
 - Resolving engineering issues during materials development.
 - Providing accurate CAE predictions with improved material models.

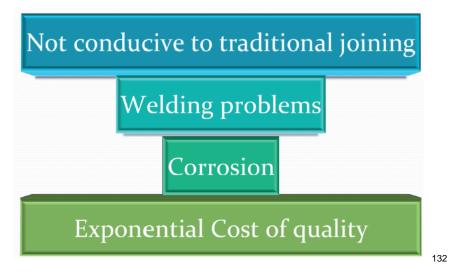
```
125
```


Mass Reduction Approaches for Body Structures and Closures

Toyota's View of Light Weighting Technologies (1)




```
127
```

Progression of Light weighting Strategies by Cost

joining technology Which materials should be joined? Increase of crashperformance and similar (St/St; Al/Al) similar + hybrid torsional stiffness ŧ Ŧ thermal mechanical Weight reduction by the - spotwelding - riveting use of highstrength steel - fusion welding - clinching - laser welding - FlowDrillScrew (FDS®) and lightweight materials - ImpAcT - Tac Setting (RIVTAC®) soldering Cost reduction accessibility? one side accessibility two-sided accessibility - FlowDrillScrew (FDS®) - semi tubular punch rivetting - ImpAcT - Tac Setting (RIVTAC®) - full punch rivetting blind rivetting - clinching New challenges for joining technologies 131 Mercedes-Benz

Lightweight Material Issues Impacting the Industry

Big Picture **ENERGY** Energy Efficiency & Renewable Energy

Energy and Vehicle Weight Reduction

- U.S. transportation energy accounts for 28% of total consumption
- 94% of transportation energy is from petroleum
- The relationship between weight and energy savings is complicated...
- ...but significant fuel economy and energy savings are likely

Vehicle Weight Reduction Today

- Lightweight materials (including steels) have seen wider application in vehicles...
- ...but vehicle weight has increased!
- Demand for improved safety, comfort, emissions control, etc. has offset weight reduction
- Development of lightweight materials provides a strong foundation for future weight reduction

Moving Forward with Lightweight Materials

- Steel, Aluminum, Magnesium, Carbon Fiber Composites, and other materials will likely play a roll in continued weight reduction
- Significant unanswered questions exist in properties, manufacturing, multi-material enabling, and modeling/simulation of these materials
- · Where does steel need to go from here?

133

Conclusion

- The issue of weight is likely to become more important to manufacturers and customers due to fuel economy.
- The economic feasibility of producing vehicles with alternative materials has been completely addressed.
- Consumers may not abandon large vehicles. The shift away form heavy cars can only came from alternative materials.
- Weight reduction involves all materials and components suppliers.