[image: image2.jpg]

Student Guide

Beer Pasteurization Process Control
Microprocessor
Student Name: ___
Acknowledgements

Developed by Bassam Matar, Faculty at Chandler-Gilbert Community College, Chandler, Arizona and Ui Luu from Glendale College, Glendale, Arizona.
Funded by NSF.
Purpose

The objective of this activity is to provide a quick start in learning C language programming to implement a simple process control using Freescale microcontroller.
Systems Rationale

In an automation and process control system, a microcontroller is used to read system interface inputs and provide a desired output. The objective of this lab is to use C language to program Freescale microcontroller to do pasteurization process control.
System Concepts

This system covers the following system concepts (signified by an X):

X
S1. A system can be defined in terms of its functional blocks i.e., a “structured functional unit.”

X
S2. A system has a purpose, transforms inputs into outputs to achieve a goal.

X
3. A system is defined by the flow of materials, energy and information, between its functional units.

X
S4. A system may be open or closed. In an open system additional inputs are accepted from the environment.

X
S5. A system is more than the sum of its parts. Individual components can never constitute a system.
X
S6. A system provides feedback to the operator and services to the user. Some system functions may involve operator action.

X
S7. Systems have unique problems.

Learning Outcomes

Appropriate SLOs for the lab activity are below. For a complete list of course SLOs visit: http://www.esyst.org/Courses/Microprocessor/_delivery/index.php

1. Represent quantities in binary codes; convert between the decimal and binary number systems. Convert between the hex and binary codes.

4. Name the basic solid state memory types such as RAM and ROM, identify the various types like SRAM, DRAM, PROM, EPROM, EEPROM, flash, explain how each works, give the basic specifications, and name an application for each.
8. Name the basic sections and components of a digital computer.

10. Distinguish between and define the terms microprocessor, CPU, microcomputer, embedded controller, microcontroller, and PLC.

11. Learn the basic commands and data formats for a common computer language such as BASIC and write simple programs to duplicate logic and math operations, control sequences, and I/O functions.

12. Describe the features and specifications of a common 8/16/32-bit microcomputer (PIC, 68HC11/12 or equivalent, 8051 derivative, etc.)

13. Identify the most popular 8, 16 and 32-bit microcontrollers.

14. Write simple data manipulation, math, and I/O routines in assembly language and C.
15. Interface a common embedded controller to some basic I/O circuits such as switches, LEDs, relays, serial I/O, display, keyboard, Analog-to-digital converter or other common device and write simple code to control/monitor it.
16. Use a typical integrated development environment (IDE) software package to program the learned microcomputer in assembler and C including software subroutine library.
LABORATORY

1. Program a basic microcontroller using a higher level language like BASIC. Implement basic logic functions including interfaces for I/O operations.

3. Build a complete embedded controller project including I/O and programs.
4. Troubleshoot and test digital circuits with an oscilloscope and, if available, a logic analyzer.

5. Debug a program using the debugger section of a development system.
Prerequisite Knowledge & Skills

· Review Freescale Microcontroller (HC12) architecture

· Review Freescale C language reference manual

Process Overview

In this lab, you will be working with a system that consists of a microcontroller interfaces with a Beer model running by a PC. Given sensors and system interface signals, you are tasked to write C Code to implement a control sequence in a Pasteurization process.
To facilitate this programming process, a starter template includes all the necessary headers set up and sample starting code is provided. Use a cable adapter to connect from the microcontroller to PC parallel port. Run the Beer model at PC to interact with the microcontroller.

Follow description of each task closely and write C code to implement each function. Verify each task is working properly before proceeding to next task. If the task is not operational as expected, troubleshoot and debug the system.

Time Needed

Lab Performance:

It should take students approximately 2.5 hours to work through the entire lab.

Lab Deliverables:

It should take students 2 hours of homework time to review Freescale Microcontroller (HC12) architecture and refresh on C language programming.

Equipment & Supplies

	Items per team
	Quantity

	1. Free scale Microcontroller (HC12) with CodeWarrior Development software
	1

	2. PC with Window XP and available USB and parallel port
	1

	3. Build Cable Adaptor from PC to Free scale board
	1

Special Safety Requirements

No serious hazards are involved in this laboratory experiment, but be careful to connect the components with the proper polarity to avoid damage.

Lab Preparation

1. Build cable adaptor to connect PC parallel port to free scale I/O ports.

Introduction

Consider the following system block diagram:

[image: image1.emf]PC based

MicroBrewer Model

Freescale

Microcontroller

(HC12)

System Lab

Beer Pasteurization Control using Freescale Microcontroller

3/20/2010

eSyst / M & L

Digital I/O

(PC Parallel Port)

Inlet Valve

Pump

Heater

Chiller

Level Sensor

Temperature

Beer

Pasteurization

Process Control

S4

S5

S6

S7

Run

0: Cold 1: Hot Temperature

0: Empty 1: Full Level Sensor

0: Cold 1: Hot Temperature

0: Empty 1: Full Level Sensor

PORTB

bit0

bit4

bit5

bit6

bit7

bit2

bit3

D0

D2

D3

The system consists of 2 components:

1. PC based Micro Brewer Model is given to simulate a micro brewer

2. Freescale Microcontroller to provide Pasteurization Process Control

The Beer Model provides the following interfaces:

	Input (from Beer Model)
	Output (from controller)

	PORTB-bit0: Run
	PORTB-bit4: Pump

	PORTB-bit1: (not used)
	PORTB-bit5: Inlet Valve

	PORTB-bit2: Level Sensor
	PORTB-bit6: Heater

	PORTB-bit3: Temperature
	PORTB-bit7: Chiller

Task

Functional Requirements:

· On Power Up, the controller monitors the “RUN” input, looking for Beer Request.
After Request signal is received, the controller will perform the following:
· Task1:

· Turn on Inlet Valve to fill the process container until it is full (Level Sensor =1) then proceed to task 2.
· Task 2:

· Turn on Heater and monitor the High Temp Limit is reached (Temp = 1).

· Task 3:

· When High Temp Limit is reached, turn off Heater.
· Task 4:

· Provide 7-second time delay for Pasteurization.
· Task 5:

· Turn on Chiller.
· Task 6:

· Monitor Temp input, when Cold Temp Limit is reached (Temp=0), turn off chiller, turn on Pump.

· Task 7:

· Monitor Level input, when process container is empty (Level = 0) , turn off Pump.
· Continue monitoring the RUN signal and repeat the control process.
Performance

1. Verify and record the results of each task.

2. Does the system operate as expected?

Deliverable(s)

· Demostrate to your instructor that the system is working properly.

· Deliver the project folder electronically which includes source code with comments.

Model Deliverable Example(s)

Develop C codes to do the prescribed tasks.

Project folder includes commented source code.

Demonstration of system operations of microcontroller with Beer Model.
Grading

Your instructor will let you know how this lab will be graded.
Appendix

BeerControlStarterProjectFolder
2
Beer Pasteurization Process Control
© 2010
Microprocessor

_1338288690.vsd
text�

�

Inlet Valve�

Pump�

Digital I/O
(PC Parallel Port)
�

PC based
MicroBrewer Model�

Freescale Microcontroller (HC12)�

Heater�

Chiller�

Level Sensor�

Temperature�

Beer Pasteurization
Process Control�

System Lab
Beer Pasteurization Control using Freescale Microcontroller�

3/20/2010
eSyst / M & L�

S4�

S5�

S6�

S7�

�

bit2�

Run�

bit4�

PORTB�

�

bit5�

bit6�

bit0�

bit3�

bit7�

D0�

D2�

D3�

