

# Fuel Cell Standards

XVI. Fuel Cell Stack

# XVI.b Fuel Cell System Schematics

## Overview:

Classroom and lab instruction on reading and understanding both electrical and mechanical schematics

- Industrial symbology for both electrical and gas handling systems
- Reading a schematic and understanding gas flows
- Schematic representations versus actual components
- Where to find schematic representation in OEM service procedures

## Description:

The ability to read electrical and mechanical schematics and applying that skill to actual systems is important to more complex troubleshooting problems and for the safe repair of systems

## Outcome (Goal):

Students will be able to identify high/low pressure and high/low voltage vehicle systems on fuel cell vehicles by utilizing OEM wiring and mechanical schematic diagrams and match components on the diagram to an actual component or connector.

## Objectives:

#### Students shall be able to:

1. Identify fuel cell specific components and locations in mechanical schematic representations





- 2. Identify fuel cell specific components and locations in electrical schematic representations
- 3. Match either pictures or actual components to symbols on the schematics
- 4. Identify ports and piping junction to actual components
- 5. Identify connector pinouts to actual connector positions
- 6. Reference OEM service procedures to find critical information.

### Tasks:

#### Students will

- 1. Given a vehicle match the mechanical schematic to actual components by using OEM service instructions.
- 2. Given a vehicle will match the electrical schematic to actual components by using OEM service instructions.
- 3. Given a generic mechanical schematic show the flow of gas on the mechanical schematic
- Will be able to associate actual vehicle high voltage cables and buss bars with cables or buss bars on a vehicle electrical schematic by using OEM service instructions.

To comment or offer suggestions on this standard, contact Ken Mays:

| Ken Mays     | NEVTEX         |
|--------------|----------------|
| 541-383-7753 | kmays@cocc.edu |

