Digital Filters




Digital Filters

The basic function of any filter is to perform some desired
frequency discrimination or selection process. Filters are
frequency sensitive circuits that pass some signal frequencies with
ease but greatly attenuate or eliminate signals of other
frequencies. Selectivity refers to how well a filter can separate or
distinguish between signals on very close frequencies. Selectivity
is determined by how steep the filter response curve is.

A digital filter is a circuit that produces traditional analog filter
results by digital methods. Digital filtering is by far the most
common application of DSP. Digital filters deliver superior
performance over analog filters. The selectivity is better (steeper
skirts) and the phase response can be adjusted to deliver a
desired result.




Analog Filters: Low Pass
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There are four basic filter types: low pass, high pass, band pass,
and band reject. The ideal response curves of the low and high

pass filters are shown.
The low pass filter passes signals below a specific cut-off

frequency (f,) but rejects signals above the cut-off.




Analog Filters: High Pass
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The high pass filter passes signals above the cut-off and rejects
those below the cut-off. The dashed curves show typical response

curves from practical analog filters.




Band Pass Filter
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The ideal and practical response curves for the band pass filter is
given in the figure above. The band pass filter passes a narrow

band of frequencies between two cut-off frequencies, f, the lower
cut off and f, the upper cut-off. The bandwidth (BW) of the filter is
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Band Reject Filters
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The band reject filter, also called a notch filter, passes all
frequencies above and below the two cut-off frequencies but
eliminates the signals with frequencies between the two cut-off

frequencies. The bandwidth (BW)is f, —f,.

Many times the filter is designed to filter out one single frequency
in which case it is referred to as a notch filter.

The dashed curves show the response provided by traditional
analog circuits.




Low and High Analog Filter Implementation
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Analog filters are made with resistor-capacitor (RC) or inductor-

capacitor (LC) sections. This figure on the left shows a low pass
filter made with an RC section.

The figure on the right shows a high pass filter made with an LC
section. These sections are cascaded to achieve greater selectivity
but with increasing attenuation.




Analog Band Pass and Band Reject Filters
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The left figure shows a band pass filter made with LC sections.
The right figure shows a notch filter made with RC sections.




Active Filters
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An active filter is one made with operational amplifiers (op amps)
and RC sections as shown in the example above. By using
multiple RC sections and feedback (via C, and C,), highly
selective filters can be made. Selectivity is improved by
cascading these filters. A benefit is that the circuit can have gain
thanks to the op amps.
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Analog Filter Limitations
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While analog filters are widely used in many applications, they
are not perfect. Performance approaching the ideal curves
cannot be achieved even with multiple cascaded filters. This
limits the ability of the filter to discriminate against signals very
close in frequency to one another.




Limitations of Analog Filter
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Analog filters require very precise values of R, L, and C. These
are difficult to obtain and very expensive. Furthermore, these
values can change with temperature or vary over time due to

aging.
DSP filters eliminate these problems completely.




Phase Response

Another limitation of analog filters is the phase response.
Capacitors and inductors have a reactance value that varies with
frequency. This is the reason that these components are useful in
making filters. If the input frequency changes, the phase of the
output also varies. While this may not hurt some analog signals,
this phase change does cause signal distortion of pulse and digital
signals.

Remember according to the Fourier theory, all rectangular pulses
are made up of a fundamental sine wave and multiple harmonic
sine waves. When all these sine waves are added together, they
form the rectangular wave. A filter circuit will produce different
phase shifts for the different harmonic frequencies. Shifting the
harmonics causes the output signal to be greatly distorted from the
original. This phase shift is called group delay.




Digital Filter Benefits

Digital filters overcome these analog filter limitations. A digital
filter can be made to provide whatever degree of selectivity is
desired. Performance closely duplicating the ideal response
curves can be achieved. The exactly vertical response curve is
sometimes referred to as a “brick wall” filter. Interfering signals
hit the brick wall and are eliminated.

In addition, the digital filters can be made with linear phase
response. This means the harmonic content of a signal is
preserved since phase shift will be a linear variation with
frequency.

Finally, digital filters are fixed by the software and not by R, L,
or C values that can change.




Types of Digital Filters

Three common types of digital filters are the averaging filter, the
finite impulse response (FIR), and the infinite impulse response
(lIR).

The averaging filter is used primarily for minimizing noise on a
signal.

The FIR filter is also called a non-recursive filter. Its output is
calculated only with current and previous inputs.

The lIR filter is a recursive filter. Recursive means that the
processing algorithm repeatedly applies a mathematical process
to the data as well as the outcomes of the process. In other
words, the |IR filter uses feedback. The IIR filter output is
calculated with the current and previous inputs but also previous
output states as well.

The averaging and FIR filters are the simplest of the three but the
lIR filter can be made to produce superior selectivity with less
processing time and effort.




Basic Digital Filter Algorithm

The processing algorithm for most digital filters is given
mathematically as:

y(n) =2 (a) x[n — 1]
The term y(n) is the computed output for a given a given input
sample value n.

> means a summation or addition of all values of the
coefficients a multiplied by each input sample x[n — 1].

The term a, refers to a constant value or coefficient value. The i
refers to the number of the coefficient meaning there are
different values of coefficient to be used in the various
multiplications.

The expression x[n — 1] does not mean x multiplied by n — 1.
The [n — 1] designation simply means the next sample in
sequence. It would be followed by sample [n — 2] then [n — 3]
and so on.
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Explaining the Algorithm

Expanding the mathematical expression given earlier:
y(n) =3 (a) X[n — 1] where i may vary from 0 to some
selected maximum value k.

The number of coefficients used in multiplying sequential samples
of the input is called the number of taps in the filter.

This gives us:
y(n)=ay;x[n]+a, x[n—-1]+a,x[n—-2]+a; x[n—-3] +

What this expression is telling you is that an output value y(n) is
calculated by first multiplying the first binary sample value [n] by a
constant coefficient a,. This is added to the next sample x[n — 1]
multiplied by another coefficient a,. The process repeats for as
many values of i are selected.




Implementing the Algorithm
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As you can see, the basic filtering algorithm requires three basic
operations: multiplication, addition, and sample sequencing. All
of these operations can be performed in any DSP chip.
Individual add and multiply instructions are available on any
processor. Special multiply and add or multiply and accumulate
(MAC) instructions can also combine the multiply-add process to
speed up the operations.




lllustrating the Algorithm
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One way to represent the algorithm is in a block diagram form.
This visual diagram better illustrates the flow and sequence of
operations.




Block Diagram Symbols

There are three symbols used in the block diagram. The circle
with the X (®) is a multiplier. It is used to multiply the binary value
of one sample by its corresponding coefficient in binary form,

The circle with the + (®) is an adder that adds two binary numbers.

The rectangle containing the word DELAY represents a time shift
or delay. Some diagrams use the designation Z-! to indicate the
delay. It could be implemented with an actual delay circuit called
a delay line whose output occurs some time after its input.
However, here this symbol is just a way of representing a time
difference between samples. The delay could also be a shift
register for binary values. But typically what happens is that the
delays are just ways of showing the sequential samples of the
original analog signal as they are received from the ADC or read
out of a RAM. Each sample is called a tap.




An Averaging Filter

Random mouse pulses

An averaging filter is used to take an average of a waveform
usually for the purpose of minimizing high frequency noise on a
signal. The figure shows a sine wave signal with high frequency
noise superimposed on it. An example is power line or auto
ignition noise on a radio signal. Since noise is random, the
occurrence and amplitude of the noise spikes will vary from cycle to
cycle of the sine wave. If we than take an average of the signal
over several samples and cycles, the noise will average itself out.
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Sample Averaging
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The algorithm illustrated in the figure will perform the average
with the appropriate coefficients. To obtain an average of any
number of values, you add all the values together then divide
by the number of values. This average is also called the mean.
Assume the following the four numbers 7, 10, 12, and 8:

Average = (7 +10+ 12 + 8)/4 = 9.25




DSP Sample Averaging
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In DSP, the divide operation can be used but it is usually slower
than a multiply operation, so we modify the averaging process as

follows:

Average =025 (7+10+12+8)=1.75+25+3+2=9.25

Remember that multiplying by a fraction is the same as dividing
by its reciprocal: 0.25 = %4. In a computer, multiplication is much

faster.

In the figure, each of the “b” coefficients is set to 0.25.
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Averaging Filter

Noise spikes decreased in

/ amplitude and “smoothed out”

By repeatedly sampling the noisy sine wave and passing the
samples through the filter, the filter will produce output samples.
When these samples are passed through a digital-to-analog
converter (DAC), they will produce the same sine wave but the
noise spikes will be greatly minimized.




Averaging Filter Operation

Noise spikes decreased in

/ amplitude and “smoothed out”

Because the noise is random, some pulses will be positive while
some are negative, some will be large and some will be small.
The averaging process makes them smaller. The resultis a
cleaner sine wave with less noise that can be more easily
recovered and processed again.

Since the noise is mainly high frequency signals, the averaging
filter is really a low pass filter. It passes the lower frequency sine
wave but attenuates the higher frequencies.




Filter Operation
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Keep in mind that this diagram is simply a block diagram
illustrating the steps of the mathematical algorithm programmed
into the DSP. Here how it works.

The samples of the analog signal feed into the input. These may
be coming directly from an ADC or they may be stored in
sequential memory locations in a RAM. Let's assume the latter
condition. The speed of processing is determined by how fast the
ADC sampling rate is or how fast the samples are read out of

RAM.
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Filter Operation Example
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Note that the first sample [n] is multiplied by the coefficient b,. The
sum goes to an adder. The adder output is simply the product of a,
and [n]. There is no output from any of the other multipliers or

delay segments since the next samples have not been read in yet.




Filter Operation: Sample 2
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Next, the second sample [n — 1] is fed into the input. At this time,
the first sample [n] has moved over to the output of the first delay
unit. Now sample [n] is multiplied by b,. The current input sample
[n — 1] is multiplied by b,. The two values are now summed to

produce the output.

Note that for each new input sample, the multiply and add process
occurs on the samples that have been fed in and a single new
output value is created. These outputs are then fed to either a
DAC for direct output or to a RAM for later output.
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Filter Operation: Sample 3
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The third input sample is then fed in where it is multiplied by b,.
The second input sample shifts over one position to the right and
the first input sample is further shifted to the right where it is
multiplied by b,. Again, the samples are multiplied by the
coefficients and a new output sample is produced.




Filter Operation: New Input Samples
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As you can see, for each new input sample, the other samples

more over to the right and are multiplied by another coefficient.
Just keep in mind that what is happening here is that the samples
are not really moving over. Instead, they are still stored in
sequence in the RAM so the DSP simply accesses them in the
correct order defined by the algorithm.

All of the circuits are being used when the fourth sample is shifted
in. When the fifth sample is read in, it and the others are
effectively moved over. The first sample drops out of the picture at
this point. The process continues with remaining samples.




Summarizing Filter Operation

-+-----10110001
10110011
-----10110011
-------10000111
-------10000010
-------10000010
-------10000010
-------01110101
01001110
----------00110011

VOLTAGE

: : TIME
: : 1. Analog signal sampled at set interval

Sampling time points and measured.

or interval (t) 2. Measured signal is converted into a
also Delay interval proportional binary number.

One way to view what is happening is to think in terms of the DSP
algorithm as only processing four samples at any given time. lItis
as if a sliding window is passing over the samples with only the
DSP using a group of four at a time. The complete operation is
illustrated by the sequence shown in the following slides.

The figure above shows a sampled analog signal to be averaged.




First Sample

10110001 (1st Sample)
-----10110011 (2nd Sample)
-----10110011 (3rd Sample)

------10000111 (4th Sample)

------10000010
------10000010
------10000010
------01110101
------01001110

00110011

i

Windown
VOLTAGE

:

Tap number

This figure shows the first sample is read in and multiplied by
coefficient b,. Note the window.
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Second Sample

(2nd Sample)
(4th Sample)
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This figure shows the second sample being read in and
multiplied by b,. The first sample is now multiplied by b,.

Be sure that you understand that the numbers [n], [n — 1], [n -2]
etc. are the designations for the taps in the earlier figure and not
the sample numbers. Note that the samples occur from left to

right.
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10110001 (1st Sample)
10110011 (2nd Sample)
10110011 (3rd Sample)
------10000111 (4th Sample)

------10000010
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------01110101

------01001110
------00110011
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This figure shows the third input sample which is multiplied by by,
the second sample is now multiplied by b, and the first sample is
multiplied by b,.
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Here we see the final step of the window.




Filter Operation Conclusion

The new values created by the DSP represent the filtered
output. As indicated earlier, they may go directly to a DAC for
conversion back to analog or they may go into a RAM where
they are used in another calculation or read out later.

Most processing is real time meaning that all the calculations
in the algorithm are carried out very fast and occur between
the sample of delay times.

When the filter output samples are converted to analog, the
resulting signal is similar to that which would be obtained with
an analog filter with similar characteristics.




FIR Filter
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An FIR filter has the same algorithm and basic process as shown
in the earlier example. What makes the FIR filter different from the
averaging filter is the coefficients. By selecting the correct set of
coefficients, the filter can be made to perform any of the four basic
filter types. The coefficients may be positive, negative, or some
combination. The coefficient values and their sequence determine
what the filter does to the sample data.




FIR Filter Processing Stages
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Furthermore, the number of processing stages in the algorithm
determines the selectivity. In this example, only four stages are
used. To produce an even steeper selectivity curve, more stages
of processing are added. FIR filters with 8 or more taps are often
needed to get the desired degree of selectivity. However, the
greater the number of taps, the greater the number of
mathematical processes and the longer the processing time.
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The Mystery of the Coefficients

Where do the coefficients come from? These are derived by
several different mathematical processes beyond the scope of
this presentation. Engineers who design DSP filters must know
this math and how to use it.

In some cases, the DSP chip manufacturer furnishes libraries
of algorithm subroutines with predefined coefficients or
programs that can be run to determine the coefficients without
having to solve the higher math usually required. With this kind
of software, the designer without a massive knowledge of the
math can create “cook book” digital filters that work perfectly.




The Infinite Impulse Response (lIR) Filter

Selectivity in a FIR filter is improved as you add sections or taps.
But just remember that as you add taps, you automatically
increase the computing time. Since you want to do real time
processing, that is processing the data as it occurs, the processor
must be very fast to make all its calculations between samples.
The more taps, the more samples being processed and the
greater the amount of computing time.

lIR filters allow the designer to produce very good selectivity with
fewer taps and less processing speed. It does this by using a
kind of feedback. In other words, it calculates the output samples
using not only the current samples but also uses previous results
from calculations to produce new output samples.




The IIR Algorithm

The mathematical representation of an IIR filter is similar to that for
FIR filters but includes a second part. The expression for the
output y[n] is:

y(n) =2 (a) x[n—i] -3 (by) x[n -]

where i and j may vary from 0 to some selected maximum value k.
Note that there are two sets of coefficients designated a;and b;.
Expanding gives:
y(n)=ay;x[n]+a,;x[n-1]+a,x[n—-2]+a;x[n—-3] +

by x[N]+b,x[N-1]1+b,x[n—-2]+ Dby x[n—3]
The subtraction is carried out in the adders by making the b

coefficients negative. Remember adding a negative number is like
subtracting.




lIR Filter Architecture
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Feed forward calculations Feedback calculations

This figure shows a drawing of one way an |IR filter can be
implemented. It does not literally correspond to the equation in the
previous frame. However, with algebraic manipulation, the
equation can be transformed to the diagram shown.




lIR Filter

)

ag b

Feed forward calculations Feedback calculations

The algorithm has two basic sections, the input called the feed
forward section on the left and a feedback section on the right.
There are four taps per section. The feedback comes by taking
the output y[n] and sending it to a second sequence of delays
where the output samples are multiplied by the b coefficients
then added together. The result is fed to adder 2 where it is
combined with the output of the feed forward section.
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lIR Filter Design

The |IR design can be applied to any of the four basic filter
types, low pass, high pass, band pass, and band reject as
described earlier for FIR filters. Selection of the coefficients
determines the filter output response. Multiple sections may be
cascaded to further shape the output response and improve
selectivity.

Again, the determination of the a and b coefficients is beyond
the range of this module but various mathematical techniques
have been implemented in software to simplify the process.




FIR vs. lIR Filters

FIR filters are the simpler of the two to design and implement.
Their response is very predictable and easily duplicated. The
phase response is linear which is a major benefit.

On the other hand, FIR filters require many taps to give the kind
of selectivity often needed. This in turn requires a very high
speed processor which is typically more expensive and power
hungry.

The IIR filter can give much better selectivity with fewer taps.
These filters require less computing time so they respond very
fast. On the down side, they do not have a linear phase
response which may or may not be a disadvantage depending
upon the application. IIR filters are also much more difficult to
design.

Both types are widely used.
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