The Discrete Fourier Transform (DFT) and
the Fast Fourier Transform (FFT)

Determining Frequency Content

The second most widely used application of DSP is to determine
the spectral content of a complex signal. That is, the DSP
performs calculations on a sampled signal such that it can
determine the frequency content of a signal. This technique is
based upon the Fourier theory which states that any complex
waveform is made up of sine and/or cosine waves of harmonically
related frequencies with different amplitude and phases.

DSP can provide the equivalent of a spectrum analyzer output. Its
output is a sequence of sample values that state the relative
amplitudes of the fundamental sine wave and all harmonics.
Phase plots can also be developed.

The mathematical algorithms for doing this frequency analysis are
the discrete Fourier transform (DFT) and the fast Fourier transform
(FFT).

Fourier Square Wave

Fundamental
/ ﬁ With 3rd harmonic

With 3rd and 5th harmonic

ﬁ Square wave

T/2

-100

A square wave can be synthesized by adding together a
fundamental sine wave and all its odd harmonics (3, 5, 7t
etc.) as shown above.

(5 © 2005

Fourier Example

Fundamental
/_ f 3rd harmonic
5th harmonic
/_ 7th harmonic

/ ¢ t ‘ ' I‘/‘ frequency

of 3f 4f 5f 7%

DC component
(if any)

If you start with an AC square wave of 1 MHz and connect it to a
spectrum analyzer, the frequency domain output displayed on the
CRT will be a plot of the frequency spectrum. As you can see, the
plot shows a fundamental sine wave at 1 MHz and progressively

smaller harmonic sine waves at 3 MHz, 5 MHz, 7 MHz and so on.

(5 © 2005

The Discrete Fourier Transform (DFT)

The DFT is simply a form of the more common Fourier analysis
that engineers use to analyze complex waveforms. Using integral
calculus, a continuously repetitive signal is divided up into math
expressions showing the sine and cosine wave content at each
frequency. A version of the Fourier series called the Fourier
transform is used analyze aperiodic signals. Aperiodic signals are
signals like pulses that occur at random or do not reoccur on a
regular basis.

The DFT is simply a version of Fourier analysis but using sampled
signals. The inputs are the periodic samples that come from an
ADC and stored in a memory. The DFT algorithm is applied and
the output is a series of new samples that indicate the amplitude
and phase angle of each sine and cosine wave that makes up the
complex wave being analyzed.

The DFT Algorithm

Here is what the DFT algorithm looks like in its raw mathematical
form.

X(k) = (1/N) >x(n)ed2™kN for values of n from 0 to N-1.

In this ugly and daunting equation, X(k) are the spectral output
values representing the amplitudes and phases of the different
sine and cosine waves. The symbol) simply means the
summation of multiple values of the signal samples represented by
the term x(n). Each sample x(n) is multiplied by e72™N where n
and k are the numbers representing the different samples and
spectral points and N is the total number of samples and spectral
points. The value e is the familiar constant 2.71818 while j is the
square root of -1 (V-1), the imaginary operator.

The DFT Algorithm Simplified

There is an identity in calculus called Euler’s rule that says that
you can replace the term x(n)ei2™kN with the equivalent
expression [cos(21Tnk/N) — j[sin21Tnk/N]. Doing this gives us a new
version of the DFT that looks like this:

X(k) = (1/N) > x(n) [cos(21Tnk/N) — j[sin21Tnk/N] for multiple
values for k and n 0 through N.
Now looking at this new expression, you begin to see how this
might produce a frequency analysis of a wave. What the
expression says is that we multiple each input sample x(n) by a
mathematical expression for a sine wave of different frequencies
and cosine wave of different frequencies and then sum the results.

What this process does is literally to compare the input wave with
sines and cosines to see how closely they resemble one another.
Then on the basis of how well they compare we can tell if that sine
or cosine wave frequency is contained within the wave. Thatis a
bit of an oversimplification but it is essentially what this algorithm
does.

Correlation

Correlation is the mathematical process of determining the
similarity between sampled two signals. What we do is multiply
each sample of one signal by each sample of the other signal, add
them up and plot the output samples. Looking at the output
samples, we can tell the degree of similarity between the two.

The correlation process is described mathematically by the
expression similar to the one we used earlier for digital filters.

y(n) = > h(k) x[n — k] where k varies from 0 to some selected
maximum value. Here k is the number of samples in the window
selected for the calculation.

Correlation Example

Instead of a sample x being multiplied by a coefficient, we have
two sets of samples h and x multiplied by one another. Expanding
the equation, we get:

y(n) = h(k) x[n] + h(k) x[n — 1] + h(k) x [n — 2] + h(k) x[n — 3] +
What this represents is multiplying the first h sample by every x
sample then summing. That gives only one output sample that
represents a point of the output correlation plot. The process
continues by shifting one set of samples over one increment and
repeating the process to get a second point on an output
sequence. One set of samples is then again shifted over one
increment and the process is repeated. This goes on until all

samples of one input are multiplied by all samples of the other
input.

Convolution

Convolution is an operation that
is similar to correlation in that
we multiply samples from one
input signal by the samples of
another signal but we invert or
flip the values of one group of
samples in time. That means
we multiply one set of samples
by the samples of the other in
the reverse order. The figures
show an input sequences, h(k),
which is a sampled rectangular
pulse and a sampled negative-
going sawtooth wave x(k).

h(k)

N

3

2 1 0 1

Sample numbers

]

X(K)

3

2 1 0 1

Sample numbers

Convolution Example

-1 0 1
Sample numbers

Before the correlation calculation is performed, the x values are
reversed as shown above. ltis as if the x samples have been
rotated around the 0 sample value. This process is called flipping.
What this does is to align the sample values to simplify the
calculation in the computer. The correlation result is still the
same.

(5 © 2005

lllustrating Convolution

The two sampled signals
are rectangular pulses with
a fixed amplitude of 1 as
shown in the example. The
two pulses are aligned so
that sample 0 of the x input
and 0 sample of the h input
are aligned. Note that the x
samples have been flipped.
All samples of x and h are
then multiplied and
summed producing the first
point on the y output
designated y(0).

x(k)

INPUTS OUTPUTS

-3 = -1

l

x(0-k)

0

]

1 2

-3 2 =,

x(1-k)

302 A

y(4)=0+0+0+1

T m

4 5

y(5)=0+0+0+0

m

0
0 1 2

NOTE: Each sample value = 1

Convolution Example

INPUTS OUTPUTS
x(k)

The x samples are T
shifted over to the VO)=0+0+1+0+0
right one increment S ° ——
then the multiply : Hsg s 1% 140
and add process is — , : —
repeated. This

produces output
y(1). This T ' ©
procedure of shift- vzt tiro
multiply-add is s - ——
followed again until Ya)=0+0+0+ 1
all samples have A L I S
been multiplied by

y(2)=0+1+1+1+0

m

y(5)=0+0+0+0

all other samples. [1] « N

0 1 2 3 4 5

NOTE: Each sample value = 1

Correlation Plot

INPUTS

A

All the samples with 0 values
produce 0 outputs so the
process is somewhat
simplified. The resulting
correlation output plot is shown
on the bottom right. This
triangular shaped output
indicates perfect correlation
between the two signals since
they are the same. Using two
different sampled signals
results in a different shaped
output and a lower percentage
of correlation. This is the
process used in computing the
DFT.

(5 © 2005

OUTPUTS

y(0)=0+0+1+0+0

m

4 5

y(1)=0+0+1+1+0

m

4 5

y2)=0+1+1+1+0

m

y(3)=0+0+1+1+0

m

4 5

y(4)=0+0+0+1

I m

4 5

y(5)=0+0+0+0

m

NOTE: Each sample value = 1

+ 0
4 5 o % 2 3 4 5

Implementing the DFT: Time Domain

Sample analog

input signal x(7)

)

N=38

This figure and the figures on the following pages show a simplified
example of how the DFT decomposes a sampled analog wave into
a frequency spectrum output. A sampled analog wave is shown
above. The calculation window is N = 8 samples. This input is then
compared to each of four other signals called basis functions in
sampled form using the convolution process.

(5 © 2005

Implementing the DFT: Basis Function

moupmmrissnams || ||| []]

what a DC level would look N2 N-1
like as a sampled wave.
Below that is one cycle of a
cosine wave representing
the fundamental frequency.
The third wave down in is
actually two cycles of a
cosine wave representing
the 2" harmonic. The

fourth wave down is three
cycles of a cosine wave
representing the 3
harmonic.

Implementing the DFT: Frequency Domain

The DFT is performed by X{0)
implementing a convolution
between the sampled input and
each basis function. Each
sample in the input wave is
multiplied by each sample in the
basis function then one is shifted
and the process is repeated until
all samples have been
multiplied.

The process is repeated on the
other basis functions. The
results for each correlation X(n)
is given here. The convolution
results show the relative
amplitudes of the DC average
X(0) as well as the fundamental,
2nd and 3 harmonics.

(5 © 2005

X Outputs

The X outputs are frequency
domain plots. The upper plot
shows a vertical output at k=0

which indicates that the input
signal has an average DC
component. This is obvious from
the sampled analog signal input

since all samples are above the
horizontal axis.

The second output X(1) shows a
vertical line at k=1. This indicates

that the input signal does contain
the fundamental frequency cosine
wave. The other outputs X(2) and
X(3) show outputs of the 2" and

|

3 harmonics.

(5 © 2005

* (k =3) N72

Inputs

If the sampled input was just

a cosine wave at the ‘X(O)

fundamental, there would

only be an output at k=1. —
There would be NO spectral

indications at k=0, k=2 or

k=3.

If the input was a sampled
sine wave at the
fundamental frequency,
there would be no output

even at k=1. Correlating a 0 (k=2) N2
sine wave and a cosine
wave produces zero [

x(3)

correlation.

ad @

(k = 3) NI2

Analysis Continues

The analysis continues by now
correlating the sampled input wave

with sine wave basis functions at

the fundamental and harmonic sine
frequencies. A similar output value
frequency plot is obtained but with
different values. P

We end up with two frequency value
domain spectrum plots: one of
cosine waves with X values and _ > =
another of sine waves with Y m =Vx(k?+y(k)
sample values. To ensure only one (k)

- ©(k) =tan™ (4)
composite output frequency plot, (k) =tan™ \3(K)
we combine the output values.

Spectrum Plot

The cosine value is shown on
the horizontal axis of a right
triangle and the sine value is
shown on the vertical axis.
Standard Pythagorean math
is performed to calculate the
length of the hypotenuse
which is the composite
magnitude of the sine and
cosine values (M). This is the
value displayed in the final
output spectrum plot.

cosine
value

m =\ x(k)? +y(k)

O(k) =tan” (%)

Spectrum Plot: Phase Angle

With both sine and cosine
samples available, the phase
angle can also be computed
producing a separate phase
output plot. Remember the
familiar expression:

Phase angle 6(k) =
tan-1[Y(k)/X(k)]

These values can actually be
shown in a plot on a computer
screen that resembles those
shown on a spectrum analyzer
screen. Otherwise, the values
calculated remain in memory to
be used by other processes.

(5 © 2005

cosine
value

m =\ x(k)? +y(k)

O(k) =tan” (%)

The Fast Fourier Transform (FFT)

Looking back at the DFT example, you can imagine how much
processing must be done to get the final result. The sampled input
is correlated with each sine and cosine basis function and the final
plots computed. It takes a great deal of processing time to analyze
a signal. The greater the number of sampling points (N) the more
precise the calculation but the longer the processing time. The
number of multiplications that must be implemented is N2. For
example, if we use a window on the sampled input with 256
samples points then the DFT takes 2562 = 65,536 multiplications.
Since multiplication in a microcomputer takes considerable time,
the DFT is often too slow. The higher the frequency of the signal
the faster the computation must be. This makes the DFT unusable
at the higher frequencies simply because the processors are just
not fast enough. This problem is solved with the FFT.

© 2005

Implementing the FFT

+
(£)}—0 B=a-bWy

O B=a-bWN’

The FFT is simply a faster way to perform a DFT. Instead of N?
multiplications, the FFT takes (N/2)log,(N). For a 256 point
analysis, instead of 65,536 multiplications, only 1024 are required
with the FFT. This is a huge improvement in efficiency resulting in
far less computing time. The FFT makes the DFT process practical
because calculations can be performed between samples.

The FFT breaks up the computation into smaller faster segments.
The basic computing algorithm is shown in the figure.

Butterfly Computation

The basic computing algorithm is called a two point DFT. The
inputs a and b are signal sample values while the mysterious W,
values are coefficients called twiddle factors that essentially
represent the basis factor values. Note the cross over
multiplication, the inversion of the b factor, and summation that
occurs. Because of the shape of this diagram, it is referred to as
a butterfly computation. A and B values are the frequency
domain outputs.

(5 © 2005

Final Output

2-POINT
DFT

2-POINT
DFT

COMBINE
2-POINT
DFTs

INPUT
SAMPLES

2-POINT
DFT

x(5) o——

x(6) o—
2-POINT
DFT

x(7) o—

COMBINE
2-POINT
DFTs

COMBINE
4-POINT
DFTs

o x(0)
—o x(1)
o x(2)
Lo x(3)
o x(4)
o x(5)

—o x(6)

—o Xx(7)

OUTPUTS
IN FREQ.
DOMAIN

The butterfly computations are then combined to produce the final
output. The figure shows how an eight point FFT is implemented.
The two point DFTs are combined into four point outputs which are
then combined into eight outputs.

(5 © 2005

Final Output: 8 Point FFT

This figure shows the
entire process for an eight
point FFT. Most FFTs
use many more points to
improve accuracy and
resolution. The number
of points used is some
power of 2.

Because of the efficiency
of the FFT and the super
speed of modern DSP
chips, it is possible to do
real time spectrum
analysis on even high
frequency signals.

(5 © 2005

Test your knowledge

Digital Signal Processing
Knowledge Probe 3

The Discrete Fourier Transform
and The Fast Fourier Transform

Click on Course Materials at the top of the page.
Then choose Knowledge Probe 3.

