Introduction to
Classes and
Objects

you right.

—Adlai E. Stevenson

Knowing how to answer one
who speaks,

1o reply to one who sends a
message.

OBJECTIVES

In this chapter you'll learn:

—Amenemope

You'll see something new.
Two things. And I call them
Thing One and Thing Two.

m What classes, objects, member functions and data
members are.

m How to define a class and use it to create an object.

m How to define member functions in a class to implement
the class’s behaviors.

m How to declare data members in a class to implement the
class’s attributes.

m How to call a member function of an object to make that
member function perform its task.

m The differences between data members of a class and
local variables of a function.

m How to use a constructor to ensure that an object’s data
is initialized when the object is created.

m How to engineer a class to separate its interface from its
implementation and encourage reuse.

on Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

Chapter 3 Introduction to Classes and Objects 3

Assignment Checklist

Name: Date:

Section:

Exercises Assigned: Circle assignments Date Due

Prelab Activities

Matching YES NO
Fill in the Blank 13, 14, 15, 16, 17, 18, 19, 20, 21
Short Answer 22,23, 24, 25, 26

Programming Output

27,128, 29, 30, 31

Correct the Code

32, 33, 34, 35

Lab Exercises

Exercise 1 — Modifying Class Account YES NO
Exercise 2 — Modifying Class GradeBook YES NO
Exercise 3 — Creating an Employee Class YES NO
Debugging YES NO
Labs Provided by Instructor
1.
2.
3.

Postlab Activities

Coding Exercises

1) 2) 3’ 4) 5) 6) 7)8

Programming Challenges

1,2

© 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

Chapter 3 Introduction to Classes and Objects 5

Prelab Activities

Matching

Name: Date:

Section:

After reading Chapter 3 of C++ How to Program, Seventh Edition, answer the given questions. The questions are
intended to test and reinforce your understanding of key concepts. You may answer the questions cither before
or during the lab.

For each term in the left column, write the letter for the description from the right column that best matches the
term.

Term Description

data members a) Primitive type that represents a single-precision floating-

calling function point number.

bi b) Causes C++ to execute a function.
object

. . c¢) Defines a class’s attributes.
publ1ic member function)

. d) A function that assigns a value to a private data member.
class definition

. e) An instance of a class.
function call

f) A function that is accessible from outside of the class in

2 e NSV

- parameter which it is declared.

— set function g) Additional information a function requires to help it per-
_ default constructor form its task.

_ 10. client h) Primitive type that represents a double-precision floating-
11 double point number.

12 float i) The compiler provides one of these for a class that does not

declare any.
j) Encompasses all of the attributes and behaviors of a class.
k) Uses an object’s or class’s functions.

I) Receives the return value from a function.

© 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

Chapter 3 Introduction to Classes and Objects 7

Prelab Activities Name:
Fill in the Blank

Name: Date:

Section:

Fill in the blanks in each of the following statements:

13.

14.

15.

16.

17.

18.

19.

20.

21.

Each function definition can specify that represent additional information the function re-
quires to perform its task correctly.

Declaring data members with access modifier is known as information hiding.
The initial value of a string is the which does not contain any characters.
Variables declared in the body of a particular function are known as and can be used only in

that function.

Each parameter must specify both a(n) and a(n)

Function reads characters until a newline character is encountered.

It is customary to define a class in a(n) file that has a .h filename extension.

A(n) normally consists of one or more member functions that manipulate the attributes that
belong to a particular object.

Classes often provide pub1ic member functions to allow clients of the class to or
the values of private data members.

© 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

Chapter 3 Introduction to Classes and Objects 9

Prelab Activities Name:

Short Answer

Name: Date:

Section:

Answer the given questions in the spaces provided. Your answers should be as concise as possible; aim for two or
three sentences.

22. List the parts of a function header and why each one is important.

23. How are constructors and functions similar? How are they different?

24. What is the relationship between a client of an object and the object’s pubT1ic members?

25. What types of declarations are contained within a class definition?

26. Distinguish between a primitive-type variable and a class-type variable.

© 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

Chapter 3 Introduction to Classes and Objects 11

Prelab Activities Name:

Programming Output

Name: Date:

Section:

For each of the given program segments, read the code and write the output in the space provided below each
program. [[Note: Do not execute these programs on a computer.]

For Programming Output Exercises 27-31, use the following class definition.

I // Definition of Account class.

2 class Account

3 {

4 public:

5 Account(int); // constructor initializes balance

6 void credit(int); // add an amount to the account balance
7 int getBalance(); // return the account balance

8 private:

9 int balance; // data member that stores the balance

10 }; // end class Account

I // Member-function definitions for class Account.

2 #include <iostream>

3 using namespace std;

4

5 #include "Account.h" // include definition of class Account
6

7 // Account constructor initializes data member balance

8 Account::Account(int initialBalance)

9 {

10 balance = 0; // assume that the balance begins at 0

11

12 // if initialBalance is greater than 0, set this value as the
13 // balance of the Account; otherwise, balance remains 0
14 if (initialBalance > 0)

15 balance = initialBalance;

16

17 // if initialBalance is negative, print error message

18 if (initialBalance < 0)

19 cout << "Error: Initial balance cannot be negative.\n" << endl;
20 1} // end Account constructor
21

22 // credit (add) an amount to the account balance
23 void Account::credit(int amount)

24 {

25 balance = balance + amount; // add amount to balance
26 } // end function credit

27

28 // return the account balance

29 dint Account::getBalance()

30 {

31 return balance; // gives the value of balance to the calling function
32 } // end function getBalance

©-20 Pao aon d O

12 Introduction to Classes and Objects

Prelab Activities Name:

Chapter3

Programming Output

27. What is output by the following main function?

int mainQ)

{
Account accountl(3550);

cout << "accountl balance: $" << accountl.getBalance() << endl;
} // end main

Your answer:

28. What is output by the following main function?

int mainQ)

{
Account accountl(-2017);

cout << "accountl balance: $" << accountl.getBalance() << endl;
} // end main

Your answer:

29. What is output by the following main function?

int main(Q)

{
Account accountl(1533);

cout << "accountl balance: $" << accountl.getBalance() << endl;
cout << "adding $253 to accountl balance" << endl;

accountl.credit(253);
cout << "accountl balance: $" << accountl.getBalance() << endl;
} // end main

© 2012 Pearson Fducation Inc__Upper Saddle River NJ_All Rights Reserved

Chapter 3 Introduction to Classes and Objects 13

Prelab Activities Name:

Programming Output

Your answer:

30. What is output by the following main function?

int mainQ)
{
Account accountl(2770);

cout << "accountl balance: $" << accountl.getBalance() << endl;
cout << "adding $375 to accountl balance" << endl;

accountl.credit(375);

cout << "accountl balance: $" << accountl.getBalance() << endl;
} // end main

Your answer:

31. What is output by the following main function?

int mainQ)
{

Account accountl(799);

cout << "accountl balance: $" << accountl.getBalance() << endl;
cout << "adding -$114 to accountl balance" << endl;

accountl.credit(-114);

cout << "accountl balance: $" << accountl.getBalance() << endl;
} // end main

Your answer:

© 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

Chapter 3 Introduction to Classes and Objects 15

Prelab Activities Name:

Correct the Code

Name: Date:

Section:

For each of the given program segments, determine if there is an error in the code. If there is an error, specify
whether it is a logic or compilation error, circle the error in the program and write the corrected code in the space
provided after each problem. If the code does not contain an error, write “no error.” [Note: It is possible that a
program segment may contain multiple errors.]

For Correct the Code Exercises 32-35, use the following class definition.

// Definition of GradeBook class that stores the course name.
#include <string> // program uses C++ standard string class
using namespace std;

// GradeBook class definition
class GradeBook
{
public:
// constructor initializes course name
GradeBook(string);
void setCourseName(string); // function to set the course name
string getCourseName(); // function to retrieve the course name
void displayMessage(); // display welcome message and course name
private:
string courseName; // course name for this GradeBook
}; // end class GradeBook

// Member-function definitions for class GradeBook.
#include <iostream>
using namespace std;

// include definition of class GradeBook from GradeBook.h
#include "GradeBook.h"

// constructor initializes courseName
// with string supplied as argument
GradeBook: :GradeBook(string course)
{
setCourseName(course); // initializes courseName
} // end GradeBook constructor

// function to set the course name
void GradeBook::setCourseName(string name)
{
courseName = name; // store the course name
} // end function setCourseName

// function to retrieve the course name
string GradeBook: :getCourseName()

{

© 2012 Pearson Education, inc., Upper-Saddte River, NJ Al Rights Reserved:

16 Introduction to Classes and Objects Chapter3

Prelab Activities Name:

Correct the Code

return courseName;
} // end function getCourseName

// display a welcome message and the course name
void GradeBook::displayMessage()

// display a welcome message containing the course name
cout << "Welcome to the grade book for\n" << getCourseName() <<
<< endl;
} // end function displayMessage

N

32. The following code segment should create a new GradeBook object:

Gradebook gradeBook("Introduction to C++", 25);

Your answer:

33. The following code segment should set the course name for the gradeBook object:

setCourseName(gradeBook, "Advanced C++")

Your answer:

34. The following code segment should ask the user to input a course name. That name should then be set as
the course name of your gradeBook.

[

cout << "Please enter the course name:" << endl;

cin.getline(inputName);

gradeBook . gepiqurseNans (Eaucation, Inc., Upper Saddle River, NJ. Al Rights Reserved.

Chapter 3 Introduction to Classes and Objects

Prelab Activities Name:

17

Correct the Code

Your answer:

35. The following code segment should output gradeBook’s current course name:

cout << "The grade book's course name is: " << gradeBook.courseName << endl;

Your answer:

© 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

Chapter 3 Introduction to Classes and Objects 19

Lab Exercises

Lab Exercise | — Modifying Class Account

Name: Date:

Section:

This problem is intended to be solved in a closed-lab session with a teaching assistant or instructor present. The
problem is divided into five parts:

1. Lab Objectives

2. Description of the Problem

3. Sample Output

4. Program Template (Fig. L 3.1-Fig. L 3.3)
5. Problem-Solving Tips

The program template represents a complete working C++ program, with one or more key lines of code replaced
with comments. Read the problem description and examine the sample output; then study the template code.
Using the problem-solving tips as a guide, replace the /* */ comments with C++ code. Compile and execute the
program. Compare your output with the sample output provided. The source code for the template is available
from the Companion Website for C++ How to Program, Seventh Edition at www. pearsonhighered. com/deitel/.

Lab Objectives
This lab was designed to reinforce programming concepts from Chapter 3 of C++ How to Program, Seventh Edi-
tion. In this lab, you will practice:

e Creating member functions.
e Invoking functions and receiving return values from functions.
* Testing a condition using an if statement.

* Outputting variables with stream insertion and the cout object.

Description of the Problem

Modify class Account (Fig. L 3.1 and Fig. L 3.2) to provide a member function called debit that withdraws
money from an Account. Ensure that the debit amount does not exceed the Account’s balance. If it does, the
balance should be left unchanged and the function should print a message indicating "Debit amount exceeded
account balance." Modify class AccountTest (Fig. L 3.3) to test member function debit.

© 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

20

Introduction to Classes and Objects

Lab Exercises Name:

Chapter3

Lab Exercise | — Modifying Class Account

Sample Output

accountl balance: $50.00
account2 balance: $0.00

Enter withdrawal amount for accountl: 25

subtracting 25 from accountl balance

accountl balance: $25
account2 balance: $0.00

Enter withdrawal amount for account2: 10

subtracting 10 from account2 balance

Debit amount exceeded account balance.

accountl balance: $25
account2 balance: $0

Program Template

VoO~NONUND WN =

-

12
13

Fig.

VoOo~NSONKNDLWN =

10
11
12
13
14

// Lab 1: Account.h
// Definition of Account class.

class Account
{
public:
Account(int); // constructor initializes balance
void credit(int); // add an amount to the account balance
/* write code to declare member function debit. */
int getBalance(); // return the account balance
private:
int balance; // data member that stores the balance
}; // end class Account

L3.1 | Account.h.

// Lab 1: Account.cpp

// Member-function definitions for class Account.
#include <iostream>

using namespace std;

#include "Account.h" // include definition of class Account

// Account constructor initializes data member balance
Account: :Account(int initialBalance)

{

balance = 0; // assume that the balance begins at 0

// if initialBalance is greater than 0, set this value as the
// balance of the Account; otherwise, balance remains 0

Fig. L3.2 | Account.cpp. (Part | of 2.)

© 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

Chapter 3 Introduction to Classes and Objects

Lab Exercises Name:

21

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Fig.

ooOo~NSONUNDR WN -

Lab Exercise | — Modifying Class Account

if (initialBalance > 0)
balance = initialBalance;

// if initialBalance is negative, print error message
if (initialBalance < 0)
cout << "Error: Initial balance cannot be negative.\n" << endl;
} // end Account constructor

// credit (add) an amount to the account balance
void Account::credit(int amount)
{
balance = balance + amount; // add amount to balance
} // end function credit

/* write code to define member function debit. */

// return the account balance
int Account::getBalance()
{
return balance; // gives the value of balance to the calling function
} // end function getBalance

L 3.2 | Account.cpp. (Part2 of 2.)

// Lab 1: AccountTest.cpp

// Create and manipulate Account objects.
#include <iostream>

using namespace std;

// include definition of class Account from Account.h
#include "Account.h"

// function main begins program execution

int mainQ)

{
Account accountl(50); // create Account object
Account account2(0); // create Account object

// display initial balance of each object
cout << "accountl balance: $" << accountl.getBalance() << endl;
cout << "account2 balance: $" << account2.getBalance() << endl;

int withdrawalAmount; // stores withdrawal amount read from user

cout << "\nEnter withdrawal amount for accountl: "; // prompt
cin >> withdrawalAmount; // obtain user input
cout << "\nsubtracting " << withdrawalAmount
<< " from accountl balance\n\n";
/* write code to withdraw money from accountl */

// display balances
cout << "accountl balance: $" << accountl.getBalance() << endl;
cout << "account2 balance: $" << account2.getBalance() << endl;

Fig. L3.3 | ¢rse4nPastsorPRabasib®l B, Upper Saddle River, NJ. All Rights Reserved.

22

Introduction to Classes and Objects Chapter3

Lab Exercises Name:

Lab Exercise | — Modifying Class Account

[

cout << "\nEnter withdrawal amount for account2:
cin >> withdrawalAmount; // obtain user input
cout << "\nsubtracting " << withdrawalAmount

<< " from account2 balance\n\n";
/* write code to withdraw money from account2 */

'; // prompt

// display balances
cout << "accountl balance: $" << accountl.getBalance() << endl;
cout << "account2 balance: $" << account2.getBalance() << endl;

} // end main

Fig. L 3.3 | AccountTest.cpp. (Part2 of 2.)

Problem-Solving Tips

1.
2.
3.

Declare pubTic member function debit with a return type of void.
Use a parameter to enable the program to specify the amount the user wishes to withdraw.

In the body of member function debit, use an if statement to test whether the withdrawal amount is
more than the balance. Output an appropriate message if the condition is true.

Use another if statement to test whether the withdrawal amount is less than or equal to the balance.
Decrement the balance appropriately.

. Be sure to follow the spacing and indentation conventions mentioned in the text.

. If you have any questions as you proceed, ask your lab instructor for help.

© 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

Chapter 3 Introduction to Classes and Objects 23

Lab Exercises Name:

Lab Exercise 2 — Modifying class GradeBook

Name: Date:

Section:

This problem is intended to be solved in a closed-lab session with a teaching assistant or instructor present. The
problem is divided into five parts:

1. Lab Objectives

2. Problem of the Description

3. Sample Output

4. Program Template (Fig. L 3.4, Fig. L 3.5 and Fig. L 3.6)
5. Problem-Solving Tips

The program template represents a complete working C++ program, with one or more key lines of code replaced
with comments. Read the problem description, and examine the sample output; then study the template code.
Using the problem-solving tips as a guide, replace the /* */ comments with C++ code. Compile and execute the
program. Compare your output with the sample output provided. The source code for the template is available
from the Companion Website for C++ How to Program, Seventh Edition at www. pearsonhighered.com/deitel/.

Lab Objectives
This lab was designed to reinforce programming concepts from Chapter 3 of C++ How to Program, Seventh Edi-
tion. In this lab, you will practice:

* Declaring data members.
* Providing ser and ger functions to manipulate a data member’s value.

* Declaring member functions with parameters.

Description of the Problem

Modify class GradeBook (Fig. L 3.4 and Fig. L 3.6). Include a second string data member that represents the
name of the course’s instructor. Provide a sez function to change the instructor’s name and a ger function to re-
trieve it. Modify the constructor to specify fwo parameters—one for the course name and one for the instructor’s
name. Modify member function displayMessage such that it first outputs the welcome message and course
name, then outputs "This course is presented by: " followed by the instructor’s name. Modify the test ap-
plication (Fig. L 3.6) to demonstrate the class’s new capabilities.

Sample Output

Welcome to the grade book for
CS101 Introduction to C++ Programming!
This course is presented by: Sam Smith

Changing instructor name to Judy Jones
Welcome to the grade book for

CS101 Introduction to C++ Programming!
This course is presented by: Judy Jones

© 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

24

Lab Exercises

Introduction to Classes and Objects

Name

Chapter3

Lab Exercise 2 — Modifying class GradeBook

Program Template

VoO~NGONUNDRWN=

N o o o e -
cCcVvwoO~NGONUNDLWN=O

Fig.

VOO ~NGONUNDWN=—=

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Fig.

// Lab 2: GradeBook.h

// Definition of GradeBook class that stores an instructor's name.

#include <string> // program uses C++ standard string class

using namespace std;

// GradeBook class definition

class GradeBook

{

public:
// constructor initializes course name and instructor name
GradeBook(string, string);
void setCourseName(string); // function to set the course name
string getCourseName(); // function to retrieve the course name
/* write code to declare a get function for the instructor’s name *
/* write code to declare a set function for the instructor’s name *
void displayMessage(); // display welcome message and instructor name

private:

string courseName; // course name for this GradeBook
string instructorName; // instructor name for this GradeBook
}; // end class GradeBook

L 3.4 | GradeBook.h.

// Lab 2: GradeBook.cpp

// Member-function definitions for class GradeBook.
#include <iostream>

using namespace std;

// include definition of class GradeBook from GradeBook.h
#include "GradeBook.h"

// constructor initializes courseName and instructorName
// with strings supplied as arguments
GradeBook: :GradeBook(string course, string instructor)
{
setCourseName(course); // initializes courseName
setInstructorName(instructor); // initialiZes instructorName
} // end GradeBook constructor

// function to set the course name
void GradeBook::setCourseName(string name)
{
courseName = name; // store the course name
} // end function setCourseName

// function to retrieve the course name
string GradeBook: :getCourseName()
{
return courseName;
} // end function getCourseName

/* write code to define a get member function for the instructor’s name

L3.5 | Grade E’%a (Part |

*/

rson Educatlon Inc., Upper Saddle River, NJ. All Rights Reserved.

Chapter 3 Introduction to Classes and Objects 25

Lab Exercises Name:

Lab Exercise 2 — Modifying class GradeBook

/* write code to define a set member function for the instructor’s name */

// display a welcome message and the instructor's name
void GradeBook: :displayMessage()

// display a welcome message containing the course name
cout << "Welcome to the grade book for\n" << getCourseName() <<
<< endl;
/* write code to output the instructor’s name */
} // end function displayMessage

nyn

Fig. L 3.5 | GradeBook.cpp. (Part 2 of 2.)

// Lab 2: GradeBookTest.cpp

// Test program for modified GradeBook class.
#include <iostream>

using namespace std;

// include definition of class GradeBook from GradeBook.h
#include "GradeBook.h"

// function main begins program execution
int mainQ)
{
// create a GradeBook object; pass a course name and instructor name
GradeBook gradeBook(
"CS101 Introduction to C++ Programming");

// display welcome message and instructor's name
gradeBook.displayMessage();

/* write code to change instructor’s name and output changes */
} // end main

Fig. L 3.6 | GradeBookTest.cpp

Problem-Solving Tips
1. In class GradeBook, declare a string data member to represent the instructor’s name.

2. Declare a pubTlic set function for the instructor’s name that does not return a value and takes a string
as a parameter. In the body of the ser function, assign the parameter’s value to the data member that
represents the instructor’s name.

3. Declare a public ger function that returns a string and takes no parameters. This member function
should return the instructor’s name.

4. Modify the constructor to take two string parameters. Assign the parameter that represents the instruc-
tor’s name to the appropriate data member.

5. Add an output statement to member function displayMessage to output the value of the data member
you declared earlier.

6. Be sure to follow the spacing and indentation conventions mentioned in the text.

7. If you have any questions as you proceed, ask your lab instructor for help.

© 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

Chapter 3 Introduction to Classes and Objects 27

Lab Exercises Name:

Lab Exercise 3 — Creating an EmplToyee Class

Name: Date:

Section:

This problem is intended to be solved in a closed-lab session with a teaching assistant or instructor present. The
problem is divided into five parts:

1. Lab Objectives

2. Description of the Problem

3. Sample Output

4. Program Template (Fig. L 3.7, Fig. L 3.8 and Fig. L 3.9)
5. Problem-Solving Tips

The program template represents a complete working C++ program, with one or more key lines of code replaced
with comments. Read the problem description and examine the sample output; then study the template code.
Using the problem-solving tips as a guide, replace the /* */ comments with C++ code. Compile and execute the
program. Compare your output with the sample output provided. The source code for the template is available
from the Companion Website for C++ How to Program, Seventh Edition at www. pearsonhighered.com/deitel/.

Lab Objectives
This lab was designed to reinforce programming concepts from Chapter 3 of C++ How to Program, Seventh Edi-
tion. In this lab, you will practice:

* Creating a class definition.

* Declaring data members.

* Defining a constructor.

* Defining ser and ger functions.

* Writing a test application to demonstrate the capabilities of another class.

Description of the Problem

Create a class called Employee that includes three pieces of information as data members—a first name (type
string), a last name (type string) and a monthly salary (type int). [/Vote: In subsequent chapters, we’ll use num-
bers that contain decimal points (e.g., 2.75)—called floating-point values—to represent dollar amounts.] Your
class should have a constructor that initializes the three data members. Provide a sez and a get function for each
data member. If the monthly salary is not positive, set it to 0. Write a test program that demonstrates class Em-
ployee’s capabilities. Create two EmpTloyee objects and display each object’s yearly salary. Then give each Em-
ployee a 10 percent raise and display each Employee’s yearly salary again.

Sample Output

Employee 1: Bob Jones; Yearly Salary: 34500
Employee 2: Susan Baker; Yearly Salary: 37800

Increasing employee salaries by 10%
Employee 1: Bob Jones; Yearly Salary: 37944
Employee 2: Susan Baker; Yearly Salary: 41580

© 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

28

Introduction to Classes and Objects

Lab Exercises

Chapter3

Name

Lab Exercise 3 — Creating an EmpToyee Class

Program Template

VoO~NGONUNDRWN=

®NOUBRWN—©O

19
20
21

N
N

-
(']

VOO ~NONUNDWN=—=

NNNN = = = e o e e e e
WN=O0OVOO~NOUDLWN=O

// Lab 3: Employee.h
// Employee class definition.

#include <string> // program uses C++ standard string class
using namespace std;

// Employee class definition
class Employee

{
public:

D R e

private:

Declare
* Declare
* Declare
* Declare
* Declare
* Declare
* Declare

fsUN P DR DI VI I V)

/* Declare a
/* Declare a

/* Declare

constructor that has one parameter for each data member */
for the employee’s
for the employee’s
for the employee’s
for the employee’s
for the employee’s
for the employee’s

set method
get method
set method
get method
set method
get method

string data member
string data member

}; // end class Employee

.L3.7 | Employee.h.

// Lab 3: Employee.cpp

// Employee class member-function definitions.

#include <iostream>
using namespace std;

first name */
first name */
last name */
last name */
monthly salary */
monthly salary */

for the employee’s first name */
for the employee’s Tast name */
an int data member for the employee’s monthly salary */

#include "Employee.h" // Employee class definition

/* Define the constructor. Assign each parameter value to the appropriate data
member. Write code that validates the value of salary to ensure that it is

not negative.

* Define

* Define

* Define

* Define

* Define

> 3 F 3

that validates the salary

/* Define a get function for

a

a

a

a

a

set
get
set
get

set

*/

function for the

function for the

function for the

function for the

function for the

Fig. L 3.8 | Employee.cpp.

first name data member. */

first name data member. */

last name data member. */

last name data member. */

monthly salary data member. Write code

to ensure that it is not negative. */

the monthly salary data member. */

© 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

Chapter 3 Introduction to Classes and Objects 29

Lab Exercises Name:

Lab Exercise 3 — Creating an EmplToyee Class

// Lab 3: EmployeeTest.cpp

// Create and manipulate two Employee objects.
#include <iostream>

using namespace std;

#include "Employee.h" // include definition of class Employee

// function main begins program execution
int mainQ)

{

/* Create two Employee objects and assign them to Employee variables. */
/* Output the first name, Tast name and salary for each Employee. */
/* Give each Employee a 10% raise. */

/* Output the first name, Tast name and salary of each Employee again. */
} // end main

Fig. L3.9 | EmployeeTest.cpp.

Problem-Solving Tips
1. Class Employee should declare three data members.

2. The constructor must declare three parameters, one for each data member. The value for the salary
should be validated to ensure it is not negative.

3. Declare a public set and get member functions for each data member. The ser functions should not re-
turn values and should each specify a parameter of a type that matches the corresponding data member
(string for first name and last name, int for the salary). The gez functions should receive no parameters
and should specify a return type that matches the corresponding data member.

4. When you call the constructor from the main function, you must pass it three arguments that match the
parameters declared by the constructor.

5. Giving each employee a raise will require a call to the ger function for the salary to obtain the current
salary and a call to the sez function for the salary to specify the new salary.

6. Be sure to follow the spacing and indentation conventions mentioned in the text.

7. If you have any questions as you proceed, ask your lab instructor for help.

© 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

Chapter 3 Introduction to Classes and Objects 31

Lab Exercises Name:

Debugging

Name: Date:

Section:

The program in this section does not compile. Fix all the compilation errors so that the program will compile
successfully. Once the program compiles, execute the program, and compare its output with the sample output;
then eliminate any logic errors that may exist. The sample output demonstrates what the program’s output
should be once the code is corrected. The source code is available from the Companion Website for C++ How
to Program, Seventh Edition at www.pearsonhighered.com/deitel/.

Sample Output

Created John Smith, age 19
Happy Birthday to John Smith

Broken Code

// Person.h
// Creates and manipulates a person with a first name, last name and age

#include <string>
using namespace std;

class Person
{
public:
void Person(string, string, int)
string getFirstName(string)
setFirstName(string)
string getLastName()
void setlLastName(string)
int getAge()
void setAge(int)
private:
string firstName;
string lastName;
int age;
}; // end class Person

Fig. L3.10 | Person.h.

// Person.cpp
// Creates and manipulates a person with a first name, last name and age

#include "Person.h"

void Person::Person(string first, string last, int years)

{

Fig. L3.11 |oreot2PemmsoiPEtUtD, Inc., Upper Saddle River, NJ. All Rights Reserved.

32 Introduction to Classes and Objects Chapter3

Lab Exercises Name:

Debugging

firstName = first;
TastName = Tast;
if (years < 0)
age = years;
} // end Person constructor

String Person::getFirstName(string FirstName)

{
return firstName;
} // end function getFirstName

Person::setFirstName(string first)

{
firstName = first;
} // end function setFirstName

String Person::getLastName()

{
return;
} // end function getlLastName

void Person::setlLastName(string last)

{
TastName = Tast;
} // end function setlLastName

int Person::getAge()
{
return years;
} // end function getAge

void Person::setAge(int years)

{
if (years > 0)
age = years;
} // end function setAge

Fig. L3.11 | Person.cpp. (Part2 of 2.)

// PersonTest.cpp
// Test application for the Person class

#include <iostream>
using namespace std;

#include "Person.h"

int mainQ)
{

Person person = ("John", "Smith", 19);

non " "

cout << "Created " << getFirstName() << << getLastName() << ", age

<< getAge() << endl;

Fig. L3.12 | PersonTest.cpp. (Part | of 2.)
© 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

Chapter 3 Introduction to Classes and Objects 33

Lab Exercises Name:

Debugging

person.setAge = person.getAge() + 1;
cout << "Happy Birthday to " << person.getFirstName() << " "
<< person.getlLastName() << endl;
} // end main

Fig. L3.12 | PersonTest.cpp. (Part 2 of 2.)

© 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

Chapter 3 Introduction to Classes and Objects 35

Postlab Activities

Coding Exercises

Name: Date:

Section:

These coding exercises reinforce the lessons learned in the lab and provide additional programming experience
outside the classroom and laboratory environment. They serve as a review after you have successfully completed
the Prelab Activities and Lab Exercises.

For each of the following problems, write a program or a program segment that performs the specified action.

1. Werite an empty class definition for a class named Student and include header file <string> so this class can
use string objects. Also add a using directive so that string will not need to be preceded by std:: every-
time it is used.

2. Declare five data members in the class from Coding Exercise I: A string variable for the first name, a string
variable for the last name and three int variables that are used to store a student’s exam grades.

© 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

36 Introduction to Classes and Objects Chapter3

Postlab Activities Name:

Coding Exercises

3. In the class from Coding Exercise 2, declare a constructor that takes five parameters—two Strings and three
ints. Implement this constructor in a separate source file and be sure to include the Student header file in
the Student source file.

4. Modify the class from Coding Exercise 3 to include a get and a set function for each of the data members in
the class. Declare each get or set function in the header file and implement it in the source file.

© 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

Chapter 3 Introduction to Classes and Objects 37

Postlab Activities Name:

Coding Exercises

5. Modify the class from Coding Exercise 4 to include a getAverage member function that calculates and re-
turns the average of the three exam grades.

6. Declare a main function to test the capabilities of your new Student class from Coding Exercise 5. Begin by
including the appropriate header files, using directives and a return statement.

© 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

38 Introduction to Classes and Objects Chapter3

Postlab Activities Name:

Coding Exercises

7. Add statements to the main function of Coding Exercise 6 to test class Student’s ger functions. Create a stu-
dent and output the name and average for the student.

8. Add statements to the main function of Coding Exercise 7 that test the set functions of class Student, then
output the new name and average of the Student object to show that the set functions worked correctly.

© 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

Chapter 3 Introduction to Classes and Objects 39

Postlab Activities Name:

Programming Challenges

Name: Date:

Section:

The Programming Challenges are more involved than the Coding Exercises and may require a significant amount
of time to complete. Write a C++ program for each of the problems in this section. The answers to these problems
are available from the Companion Website for C++ How to Program, Seventh Edition at www.pearsonhigh-
ered.com/deitel/. Pseudocode, hints or sample output is provided for each problem in order to aid you in your
programming.

1. Create a class called Invoice that a hardware store might use to represent an invoice for an item sold at the
store. An Invoice should include four pieces of information as data members—a part number (type
string), a part description (type string), a quantity of the item being purchased (type int) and a price per
item (int). [Vore: In subsequent chapters, we'll use numbers that contain decimal points (e.g., 2.75)—called
floating-point values—to represent dollar amounts.] Your class should have a constructor that initializes the
four data members. Provide a ser and a ger method for each data member. In addition, provide a member
function named getInvoiceAmount that calculates the invoice amount (i.e., multiplies the quantity by the
price per item), then returns the amount as an int value. If the quantity is not positive, it should be set to
0. If the price per item is not positive, it should be set to 0. Write a test program that demonstrates class
Invoice’s capabilities.

Hints:
* To solve this exercise, mimic your solutions to Lab Exercises 1-3.

* The input values for the quantity and the price per item must be validated before they can be used to
set the corresponding data members. This should be done both in the constructor and in the appropriate
set functions.

e The function header for getInvoiceAmount should be int getInvoiceAmount().

* Your output should appear as follows:

Part number: 12345
Description: Hammer
Quantity: 100

Price per item: $5
Invoice amount: $500

quantity cannot be negative. quantity set to O.
Invoice data members modified.

Part number: 123456

Description: Saw

Quantity: O

Price per item: $10
Invoice amount: $0

© 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

40 Introduction to Classes and Objects Chapter3

Postlab Activities Name:

Programming Challenges

2. Create a class called Date that includes three pieces of information as data members—a month (type int),
a day (type int) and a year (type int). Your class should have a constructor with three parameters that uses
the parameters to initialize the three data members. For the purpose of this programming challenge, assume
that the values provided for the year and day are correct, but ensure that the month value is in the range 1-
12; if it is not, set the month to 1. Provide a ser and a ger function for each data member. Provide a member
function displayDate that displays the month, day and year separated by forward slashes (/). Write a test
program that demonstrates class Date’s capabilities.

Hints:
* To solve this exercise, mimic your solutions to Lab Exercises 1-3.

* For the purpose of this programming challenge, it is not necessary to validate the year and day values
passed to the constructor or the set function, but should still validate the month values.

* Your output should appear as follows:

Month: 5
Day: 6
Year: 1981

Original date:
5/6/1981

New date:
1/1/2005

© 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

