

Series and Parallel Circuits

DISCLAIMER & USAGE

- This material is based upon work supported by the National Science Foundation's Advanced Technological Education Program under Grant No. 1801177.
- Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Different Ways of Combining Resistors

For analysis, multiple resistors must often be combined as a single equivalent resistance.

Series Resistors

- Find three resistors: 220Ω , 470Ω , & 1000Ω
- Place them in series on the breadboard with two jumper wires

Do not plug resistors to power!

Measure Resistance Combinations

 $R_{eq} = 220\Omega + 470\Omega + 1000\Omega = 1690\Omega$

Generalizing the Equivalent Resistance: $R_{eq} = R_1 + R_2 + \dots + R_n = \sum_{i=1}^n R_i$

Measuring Resistance for Resistors in Parallel

Do not plug resistors to power!

Now measure resistance across each individual resistor. What happens?

<u>Class Problem</u>: Consider the circuit below.

- a. What is the total current supplied to the resistors (current that leaves the power source)?
- b. How much power is consumed by the resistors?

Solution:

a.
$$R_{eq} = \frac{1}{\frac{1}{2\Omega} + \frac{1}{6\Omega}} = \frac{1}{\frac{3}{6} + \frac{1}{6}} = \frac{1}{\frac{4}{6}} = \frac{6}{4} = 1.5\Omega$$

 $V = I \cdot R \implies I = \frac{V}{R} = \frac{3V}{1.5\Omega} = 2A$

b.
$$P = I \cdot V = 3V \cdot 2A = 6W$$

Combined Series & Parallel Resistors

Procedure:

STEP 1: Combine adjacent series resistors in series.

STEP 2: Compute the equivalent resistance of each "group" of parallel resistors.

STEP 3: Redraw the circuit with intermediate equivalent resistances.

STEP 4: Repeat steps 1, 2, and 3 until R_{eq} is found.

