Course Competencies:

- 1. Explain the basic elements of a process control system.
- 2. Setup and maintain instrument devices that control and monitor analog signals.
- 3. Interpret electrical control prints and Piping & Instrument Diagrams.
- 4. Install/maintain an instrument loop controlled with a stand alone controller.
- 5. Install/maintain an instrument loop controlled with a PLC.
- 6. Explain a process circuit that monitors and controls temperature.
- 7. Explain a process circuit that monitors and controls level.
- 8. Explain a process circuit that monitors and controls pressure & flow.
- 9. Setup and troubleshoot a process control loop.

Proposed Modules in IND221 (for Fall 2023 8B):

- M1 Introduction to Instrumentation Basics
- M2 P&ID Diagrams and Single-Loop Controllers
- M3 PLC Controllers for Analog Control
- M4 Controls on the Festo Process Trainer
- M5 Temperature Sensors & Controls
- M6 Level Sensors & Controls
- M7 Flow/Pressure Sensors & Controls
- M8 Methods of Automatic Control

Current Lab Activities:

(new) Signal generator with a 250 ohm resistor

T/C module on SLC-500

Analog module on an SLC-500

UDC1200 setup and configure for manual and automatic mode

(new) Have the students reset the parameters in the UDC1200 back to factory defaults

Differential Pressure transmitter setup

Calibrate temperature transmitter

Manually control 2 proportional valves to set the level in the tank

(New) PF525 controlled by a 4-20mA signal from an SLC-500

(New) PF525 controlled by a 4-20mA signal from a ControlLogix

Lab on wiring the control power on the Process Trainer

Proposed Modules in IND221 with Labs: (for Fall 2023 8B):

M1 - Introduction to Instrumentation Basics

(new) Signal generator with a 250 ohm resistor, and the signal generator used to change the intensity of the light bulb using a proportional controller

M2 - P&ID Diagrams and Single-Loop Controllers

UDC1200 setup and configure for manual and automatic mode

(new) Have the students reset the parameters in the UDC1200 back to factory defaults

M3 - PLC Controllers for Analog Control

T/C module on SLC-500

Analog module on an SLC-500

(New) PF525 controlled by a 4-20mA signal from an SLC-500

M4 - Controls on the Festo Process Trainer

Lab on wiring the control power on the Process Trainer

(New) PF525 controlled by a 4-20mA signal from a ControlLogix

M5 - Temperature Sensors & Controls

Calibrate temperature transmitter

M6 - Level Sensors & Controls

Manually control 2 proportional valves to set the level in the tank

M7 - Flow/Pressure Sensors & Controls

Differential Pressure transmitter setup

M8 - Methods of Automatic Control

Circuit setup to control level with a proportional valve, while monitoring the level and controlling the gate valve to drain tank.

Module 1: Introduction to Instrumentation Basics

Purpose:

Introduce the student to analog signals and the reason th

Topics covered:

Discrete versus analog signals and voltages

24Vdc and 120Vac discrete input and output module wiring and devices

Analog signals, where they are used and what are the most common

Cabling and signal transmission basics

Purpose of a transmitter

2 and 4 wire transmitters (simulator and source)

Process Variable and Control Variable

How to use the Signal Generator to create a 4-20mA source

Description:

Outcomes:

- 1. Explain the difference between analog and digital signals
- 2. Compare the characteristics of a current analog signal and a voltage analog signal
- 3. Measure a 4-20 mA signal in an instrument circuit
- 4. Explain the termination of the wires of an instrument signal cable to instrument devices
- 5. Convert analog signals to a percentage and also to the process variable
- 6. Explain the purpose of an instrument transmitter in a process system
- 7 Wire a transmitter into an instrument circuit

Hands-On Activities:

Use the 4-20mA source to a 250 ohm resistor and measure the voltage drop across the resistor Measure input impedance of an analog input module

Inject a signal using signal generator into an analog input channel and measure the voltage Connect a transmitter to a 24Vdc P/S and to the input channel of a UDC1200

Instructional Materials:

Textbook Reading, Pages 293-300 Transmission Signals

Performance Assessment #1 (after M2 is complete)

Setup the UDC1200 and manually control the output signal to control the light intensity

Manually reset the UDC1200 to factory default settings

Reset the UDC3300 to factory default settings

Calibrate an Acromag 250T transmitter

Connect a transmitter to a 24Vdc P/S and to the input channel of a UDC1200

Performance Assessment #2 (after M4 is complete)

Connect a T/C to the T/C module on an SLC-500 from an electrical print Determine the address in the processor for the T/C Connect an SLC-500 analog output to a PF525 VFD and control the speed with a program Measure the analog signal going to the PF525

Performance Assessment #3 (after M6 is complete)

Wire the pushbutton controls for the Process Trainer Calibrate the I/P converter on the process trainer

Performance Assessment #4 (after M8 is complete)

Calibrate the I/P converter on the process trainer Load a project into the L5000 processor and the Panelview Wire a control system based on the electrical prints and the P&ID

EEM162 (Aiken CC in SC)

- 1. Introduction to Process Control and Safety
- 2. Instrument Tags
- 3. Piping & Instrument Diagrams
- 4. Loop Controllers
- 5. Final Control Elements
- 6. Level Measurement
- 7. Liquid Level Control
- 8 Methods of Automatic Control
- 9. Basic Flow Measurement and Control
- 10. Control Loop Performance

Instrumentation and Process Control Chapters in Textbook

Chapter 1—Instrumentation Overview	
Chapter 2—Fundamentals of Process Control	
Chapter 3—Piping and Instrumentation Diagrams	
TEMPERATURE MEASUREMENT	
Chapter 4—Temperature, Heat, and Energy	29
Chapter 5—Thermal Expansion Thermometers	37
Chapter 6—Electrical Thermometers	47
Chapter 7—Infrared Radiation Thermometers	67
Chapter 8—Practical Temperature Measurement and Ca	llibration 78
PRESSURE MEASUREMENT	
Chapter 9—Pressure	95
Chapter 10—Mechanical Pressure Instruments	104
Chapter 11 — Electrical Pressure Instruments	114
Chapter 12—Practical Pressure Measurement and Calib	oration 122
LEVEL MEASUREMENT	
Chapter 13—Mechanical Level Instruments	133
Chapter 14—Electrical Level Instruments	
Chapter 15—Ultrasonic, Radar, and Laser Level Instrument	ents 157
Chapter 16—Nuclear Level Instruments and Weigh Syste	ems 163
	on 169

Chapter 18—Fluid Flow	17
Chapter 19—Differential Pressure Flowmeters	185
Chapter 20—Mechanical Flowmeters	194
Chapter 21 - Magnetic, Ultrasonic, and Mass Flowmeters	205
Chapter 22—Practical Flow Measurement	213
ANALYZERS	
Chapter 23—Gas Analyzers	219
Chapter 24—Humidity and Solids Moisture Analyzers	
Chapter 25—Liquid Analyzers	244
Chapter 26—Electrochemical and Composition Analyzers	259
POSITION MEASUREMENT	
Chapter 27—Mechanical and Proximity Switches	271
Chapter 28—Practical Position Measurement	

Original Modules in IND221 (as of Spring 2023):

- M1 Understanding the SLC-500 Analog Card
- M2 Understanding the SLC-500 Thermocouple Card
- M3 Understanding Universal Digital Controllers
- M4 Familiarization with the Labvolt Trainer
- M5 Understanding Pressure
- M6 Understanding Level Control
- M7 Understanding Flow
- M8 Understanding Temperature

TRANSMISSION AND COMMUNICATION	
Chapter 29—Transmission Signals	293
Chapter 30—Digital Numbering Systems and Codes	
Chapter 31 — Digital Communications	
Chapter 32—Industrial Networks	323
Chapter 33—Wireless Systems	
Chapter 34—Practical Transmission and Communication	352
AUTOMATIC CONTROL	<u></u>
Chapter 35—Automatic Control and Process Dynamics	361
Chapter 36—Control Strategies	383
Chapter 37—Controller Tuning	407
Chapter 38 — Digital and Electric Controllers	421
FINAL ELEMENTS	
Chapter 39—Hydraulic Analysis	436
Chapter 40—Control Valves	461
Chapter 41 — Selection and Sizing of Control Valves	479
Chapter 42—Regulators and Dampers	499
Chapter 43—Actuators and Positioners	509
Chapter 44—Variable-Speed Drives and Electric Power Controllers	528
SAFETY SYSTEMS	
Chapter 45—Safety Devices and Equipment	537
Chapter 46—Electrical Safety Standards	
Chapter 47—Safety Instrumented Systems	573
PROCESS CONTROL APPLICATIONS	
Chapter 48—General Control Techniques	579
Chapter 49—Temperature Control	605
Chapter 50—Pressure and Level Control	
Chapter 30—Fressure and Level Control	
Chapter 51 — Flow Control	624

Checking thermocouple with ohmmeter

https://www.youtube.com/watch?v=3_lwLOuxr0Y&t=110s

Omega Engineering youtube channel

https://www.youtube.com/user/OmegaEngineering1

Some module 1 topics for IND221:

Review discrete signals for PLC inputs

Analog signals: 4-20mA, 1-5 Vdc, 0-10Vdc and 3-15 psi

Why use an offset on these analog signals?

% of range on an analog signal

How to calculate the signal based on percentage

Signal cable 250 ohm conversion, 4-20ma to 1-5 Vdc What is a transmitter? What is a sensor?