

Design of Experiments (DOE) For Technicians

Presented by Southwest Center for Microsystems Education -SCME-February 2013

SCME is a National Science Foundation Advanced Technological Education (ATE) Program at the University of New Mexico.

We offer professional development and educational materials to excite and engage high school, community college and university students in the field of Microsystems (MEMS) technology.

Support for this work was provided by the National Science Foundation's Advanced Technological Education (ATE) Program through Grants #DUE 0992411.

SEM of Loop and Hinge System Courtesy of Sandia National Laboratories

Our Presenters

Barb Lopez Research Engineer, University of New Mexico and Instructional Designer, SCME

Mary Jane (MJ) Willis Instructional Designer, SCME and retired Chair for the Manufacturing Technology Program – Central New Mexico Community College

What will we cover today?

- What SCME can do for you
- What is DOE and Why do we Experiment?
- Factors, Factor Levels, and Responses
- Full Factorial Design
- Main and Interaction Effects
- Plan / Do / Check/ Act (PDCA) Cycle

Educational Materials

- SCME Learning Modules
 - Informational Units / lessons
 - Supporting activities
 - Supporting assessments
- ~40 Modules in the areas of
 - Safety
 - Microsystems Introduction
 - Microsystems Applications
 - Bio MEMS
 - Microsystems Fabrication
- 11 Instructional Kits
- All are available @ <u>scme-nm.org</u>

Professional Development

- 4 to 5-day workshops
- 2-day workshops
- 1-day workshop
- Conferences and conference workshops
- Create hubs at other colleges to teach our workshops
- Webinars
- SCME on YouTube (<u>https://www.youtube.com/user/scme2012</u>)

Let's talk Cake!

What Makes a "Good" Cake

What are some of those characteristics or attributes?

- Tastes Good
- Moist
- "Good" cake density
 - Not falling apart
 - Not like eating a brownie
- Look Good

What Factors Should I Consider?

Factors

- Oven Temperature
- Amount of Flour
- Amount of Sugar
- Amount of Butter/Oil
- Amount of Liquid (milk/H₂0)
- Number of Eggs
- Amount of Leavening Agent
- Amount of Salt
- Baking Time
- Altitude
- Humidity

Wait - there's more?

Factors I could also consider

- Temperature of the ingredients
- Mixing method
- Sequence of mixing
- Who is doing the baking

What is DOE?

Factors

- Oven Temperature
- Flour
- Sugar
- Butter/Oil
- Liquid
- Eggs
- Baking Powder
- Salt
- Baking Time
- Altitude
- Humidity
- Temp of ingredients
- Mixing method
- Person baking

Why do we need (DOE) Design of Experiments

Elements of DOE

Structure and Layout

Factor Levels

Controllable:

Ingredients Oven Temp Temp of Ingredients Mixing Methods Uncontrollable: Humidity Altitude Person performing process (Noise)

Factors: Cause and Effect Diagram

Factors Affecting Cake Density

Factors: Cause and Effect Diagram

Factors Affecting Cake Density

Factor Levels

Factor Levels

- 1 or 3 Eggs
- 325 or 375 °F

Responses

Factor Levels

Density

Structure and Layout

Structure and Layout

Summary of our Cake Experiment

Two Factor Screening Experiment

- Single Factor Experiments
 - Changing only one factor at a time
 - Holding other factors constant
 - Only shows a factor's main effect on response

- Main Effect
- Interaction Effect

• Multiple Factor Experiments

Number of Runs = L^F

Factors = F

Levels = L

- Two Factors, Two Factor Levels
 - $2^2 = 4$ Runs
- Three Factors, Two Factor Levels
 - $2^3 = 8$ Runs
- Three Factors, Four Factor Levels
 - $4^3 = 64$ Runs

• Experiments with factors varied at 2 levels measure the linear effects the factors have on a process

• Experiments with factors varied at more than 2 levels measure the non-linear effects of the factors

- Screening Experiments
 Full Factorial Experiment
 4 Factors, 2 Factor Levels, 2⁴ = 16 Runs
 - 14 Factors, 2 Factor Levels, 2¹⁴ = 16,384 Runs

Fractional Factorial Experiment 4 Factors, 2 Factor Levels, 2⁽⁴⁻¹⁾ = 2³ = 8 Runs OR 4 Factors, 2 Factor Levels, 2⁽⁴⁻²⁾ = 2² = 4 Runs

A Two Factor Design

Structure and Layout

A Two Factor Design

This 2 Factor Design at 2 Levels will be a 2^2 Factorial = 4 Runs

Combination	Level of A	Level of B	Response
1	Low	Low	Y ₁
2	High	Low	Y ₂
3	Low	High	Y ₃
4	High	High	Y ₄

Combination	Level of A	Level of B	Response
3	Low	High	Y ₃
2	High	Low	Y ₂
4	High	High	Y ₄
1	Low	Low	Υ ₁

Question

If you were running this experiment, which one would you use?

Combination	Level of A (# of Eggs)	Level of B (Temp °F)	Density
1	1	325	Y ₁
2	3	325	Y ₂
3	1	375	Y ₃
4	3	375	Y ₄
Combination	Level of A (# of Eggs)	Level of B (Temp °F)	Density
Combination 3	Level of A (# of Eggs) 1	Level of B (Temp °F) 375	Density Y ₃
Combination 3 2	Level of A (# of Eggs) 1 3	Level of B (Temp °F) 375 325	Density Y ₃ Y ₂
Combination 3 2 4	Level of A (# of Eggs) 1 3 3	Level of B (Temp °F) 375 325 375	Density Y ₃ Y ₂ Y ₄

A Two Factor Design

This 2 Factor Design at 2 Levels will be a 2^2 Factorial = 4 Runs

Combination	Level of A	Level of B	Response
1	Low	Low	Y ₁
2	High	Low	Y ₂
3	Low	High	Y ₃
4	High	High	Y ₄

Combination	Level of A (# of Eggs)	Level of B (Temp °F)	Density
1	1	325	Y ₁
2	3	325	Y ₂
3	1	375	Y ₃
4	3	375	Y ₄

Effect Plots

Main Effects

Question

Another Question

Interaction Effects

Which of following yields the densest cake?

- a. 1 egg and 375
- b. 1 egg and 325
- c. 3 eggs and 325
- d. 3 eggs and 375

Interaction Effects

WHAT DOES THIS SHOW?

PDCA Cycle

Plan

Define Responses being tested & standards to test by Consider Cost!
 Define Runs and Conditions
 Define assumptions

EXAMPLE – SiO₂ Deposition

Define Problem:

Characterize an Oxidation Process for the growth of a Silicon Dioxide layer on a Silicon Substrate on a NEW Oxidation Furnace.

Objective:

Grow 1000 Angstroms of high quality SiO₂ on the wafer surface in a minimum amount of time.

Response:

Oxide Thickness

Brainstorm Factors

Plan

Oxide Thickness (μm)

Choose Factors & Levels

The Process: Dry Oxidation

Two Factors that affect SiO₂ Thickness:

- 1. Furnace Temperature
- 2. Time

Measurement Criteria:

- Quality of the oxide
- Oxidation rate
- Oxidation variation
 - Within a single wafer
 - Within a full run

Choose Factors & Levels

Two Factors that affect SiO₂ Thickness:

Furnace Temperature

 Low – 920 C
 High – 1100 C

 Time

 Low – 0.3 Hour (18 minutes)
 High – 2 Hours

Design Experiment

Full Factorial – Characterization Experiment

- Two Factors
- Two Levels
- $2^2 = 4$ Runs

Assumptions

- Dry Oxidation
- Considerations
- Cost
- Time to run

Design Experiment

Option 1

Plan

Combo	Time (Hrs)	Temp (C)	Thickness (μm)
1	0.3	920	Y ₁
2	2	920	Y ₂
3	0.3	1100	Y ₃
4	2	1100	Y ₄

Option 3

Combo	Time (Hrs)	Temp (C)	Thickness (μm)
1	0.3	920	Y ₁
3	0.3	1100	Y ₃
2	2	920	Y ₂
4	2	1100	Y ₄

Option 2

Combo	Time (Hrs)	Temp (C)	Thickness (μm)
3	0.3	1100	Y ₁
2	2	920	Y ₂
4	2	1100	Y ₃
1	0.3	920	Y_4

Option 4

Combo	Time (Hrs)	Temp (C)	Thickness (μm)
3	0.3	1100	Y ₃
4	2	1100	Y ₄
1	0.3	920	Y ₁
2	2	920	Y ₂

Do

How is it being monitored?Data collection should be consistent.Make sure equipment is calibrated.Is a data backup necessary?Is your experiment free from outside influence?

Conduct Experiment

Run Plan

Combo	Time (Hrs)	Temp (C)	Thickness (μm)
1	0.3	920	Y ₁
2	2	920	Y ₂
3	0.3	1100	Y ₃
4	2	1100	Y ₄

Results

Combo	Time (Hrs)	Temp (C)	Thickness (μm)
1	0.3	920	0.025
2	2	920	0.065
3	0.3	1100	0.08
4	2	1100	0.180

Check

Computer Analysis is usually done for in depth interpretation Include problems or unexpected occurrences in your study <u>Communication</u> is KEY!! Talk to members of your team!

Analyze Data

A = Time B = Temperature

Check

Analyze Data

Check

Oxide Thickness (μm)

Draw Conclusions

Combo	Time (Hrs)	Temp (C)	Thickness (μm)
1	0.3	920	0.025
2	2	920	0.065
3	0.3	1100	0.08
4	2	1100	0.180

Check

Draw Conclusions

Combo	Time (Hrs)	Temp (C)	Thickness (μm)
1	0.3	920	0.025
2	2	920	0.065
3	0.3	1100	0.08
4	2	1100	0.180

Number of Runs = L^F Factors = F Levels = L

Check

Act

New factor levels may be required New experiments may need to be run Results may lead to changes in the process or training of personnel

- Examine the SiO₂ Quality of all of the experimental runs
- Design a NEW experiment based upon the quality exam
- Fine Tune the Levels of the two factors
 - 2 Factors

Act

- 3 Levels for Temperature and Time
- # of Runs = L^F
- What will the Number of Runs be?

Thank You For Joining Us

Barb Lopez botero@unm.edu

Mary Jane (MJ) Willis mjwillis@comcast.net

Webinar Resources

To access this webinar recording, slides, and handout, please visit

www.scme-nm.org

www.scme-nm.org

SCME Upcoming Webinars

March 28, 2013: Problem-solving Tools Applied to Microfabrication

NOTE: To see previously recorded webinars, visit scme-nm.org.

All Webinars on Thursday @ 1 PM ET

It was Fun!

Thank you for attending this SCME Webinar

Design of Experiments for Technicians