Basic Print Reading

ACADs (08-006) Covered

5.1.1.2.1.7 5.1.2.18

Keywords

Drawings, amendments, electrical components, mechanical components,

Description

Supporting Material

BASIC PRINT READING NNIFD0020

COURSE TERMINAL OBJECTIVE

When presented with a task to evaluate the condition of an electrical or mechanical component, the Student will be able to correctly locate and obtain the appropriate drawing and its amendments and identify the condition of the electrical or mechanical components on the drawing. Mastery will be demonstrated by passing an exam with a minimum score of 80%.

E001 Given a Drawing number, identify the components, which make up the Drawing number.

E002 State why As-Built Drawings are the most current available type drawing.

E003 State the reason that As-Built Drawings are preferred over Design drawings for use in the plant.

EO04 State where the standard numbering and symbols used on electrical or mechanical drawings at PVNGS can be found.

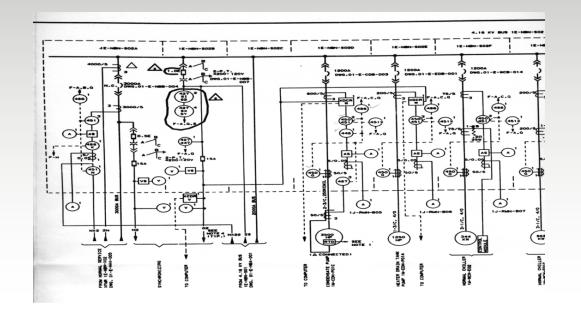
EO05 State the purpose of a Piping and Instrument Diagram

EO06 Identify and describe the use of each Piping and Instrument Diagram Symbol used at PVNGS

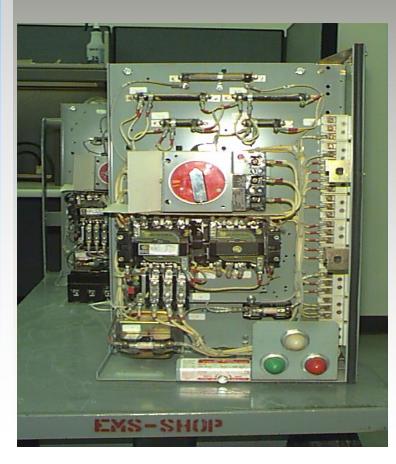
EO07 Locate and find the latest revision to a Single Line electrical drawing.

EO08 Locate a vendor drawing.

EO09 Given a Single Line electrical drawing, locate and describe the information found in the following: 1.The Title Block

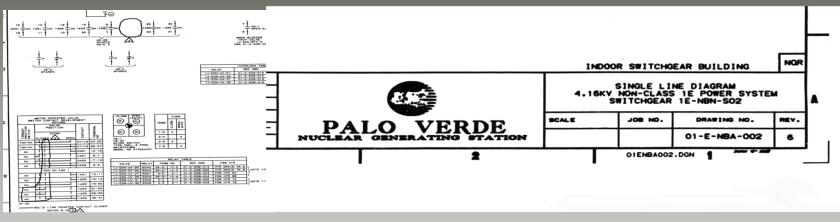

2.The Legend

- **3.The Functional Table**
- **4.The Notes Section**


	FUNCTIONAL TABLE
00E	DESCRIPTION
F-A	AMPLINCIATOR
F-B	TRIPS 4.16KY BUS FEEDER BREAKER
F-C	TRIPS 4.16KY FEEDER BREAKER
F-Q	INPUT TO COMPUTER
F-S	TRIPS 4.16KY SELECTED BREAKER
F-H	STARTS BREAKER COOLING FAN
F-K	PERMITS SUPPLY AUTO TRANSFER
F-N	BLOCKS SUPPLY AUTO TRANSFER

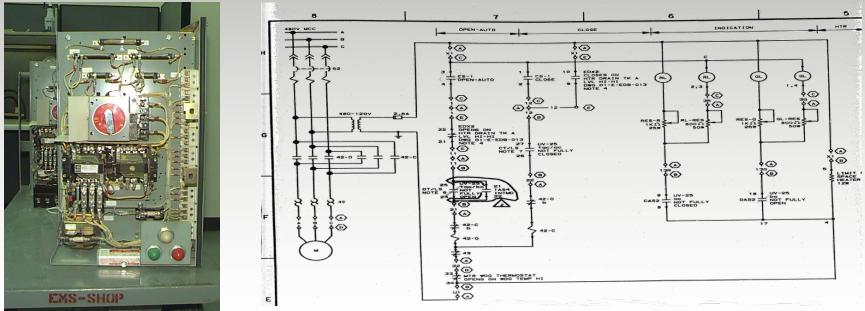
	IND	OOR SWITCHG	EAR BUILDING	NOR
	4.16	V NON-CLASS	NE DIAGRAM 1E POWER SYSTE 1E-NBN-SO2	N .
DALO VEDDE	SCALE	JOB NO.	DRAWING NO.	REV.
PALO VERDE NUCLEAR GENERATING STATION			01-E-NBA-002	6
2	L T	01ENBA002	DGN	L

EO10 Given a Single Line electrical drawing, locate and trace the following: 1.The Main Power Path 2.The Protection and Indication Path

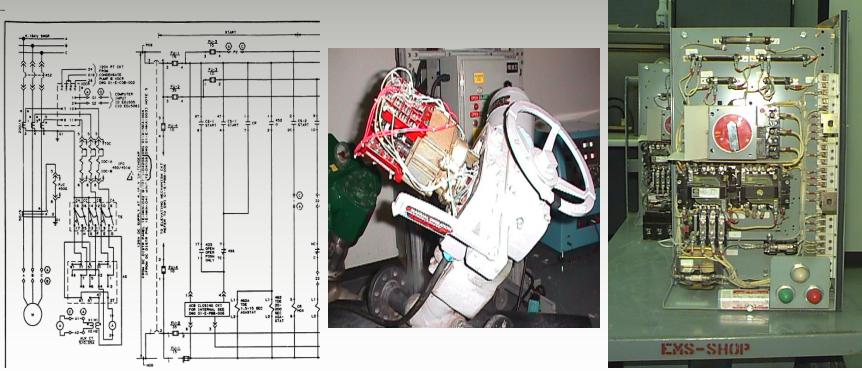


Lesson Enabling Objectives EO11 Given a Single Line electrical drawing identify the Components and Symbols located on the drawing.

EO12 Given an Elementary electrical drawing, locate and describe the information found in the following:

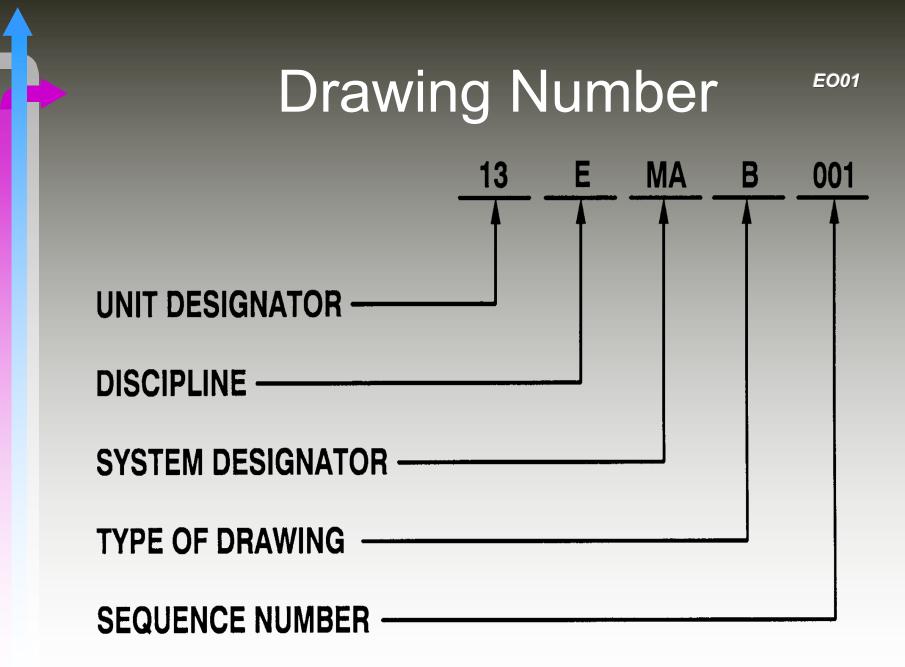


1.The Title Block


2.The Cabling Block Diagram

3. The Switch Contact Scheme

EO13 Given an Elementary electrical drawing, locate and trace the following: 1.The Protection and Indication Path 2.The steps to energize or de-energize a load


EO14 Given an Elementary electrical drawing, identify the Components and Symbols located on the drawing.

EO01 Given a Drawing number, identify the components, which make up the Drawing number.

Drawing Number

13-E-MAB-001

Unit Designator Chart **E001**

UNIT DESIGNATOR CHART

- 01 UNIT 1 13-E-MAB-001
- 02 UNIT 2
- 03 UNIT 3
- 12 UNITS 1 & 2
- 23 UNITS 2 & 3
- 31 UNITS 1 & 3

13 and AO Indicates these are

- **13 ALL 3 UNITS** a design drawing
- AO COMMON (SHARED)

- Discipline Identifiers DISCIPLINE IDENTIFIERS 13-E-MAB-001 A - ARCHITECTURAL
- C CIVIL/STRUCTURAL
- E ELECTRICAL
- J CONTROL
- M MECHANICAL
- **N NUCLEAR ENVIRONMENT**
- P PLANT DESIGN
- S PIPE SUPPORT

System Designators (1)

MECHANICAL SYSTEMS

Main Power Cycle and Auxiliaries

AF Auxiliary Feedwater

- CD Condensate
- CT Condensate Transfer & Storage
- ED Feedwater Heater Extraction Steam & Drain
- FW Feedwater
- MT Main Turbine & MSR's
- SG Main Steam

NSSS - Steam Generator Controls and Auxiliaries

- CH Chemical and Volume Control
- RC Reactor Coolant
- RX Reactor Core
- SC Secondary Chemical Control
- SI Safety Injection and Shutdown Cooling
- SS Nuclear Sampling System

Turbine Generator and Auxiliaries

- AR Condenser Air Removal
- CE Stator Cooling
- O Main Turbine Control Oil
- GH Generator Hydrogen and CO2
- GS Turbine Steam Seal and Drain
- LO Lube Cil
- OS Lube OI Storage, Transfer and Purification
- SO Generator Seal Oil

Circulation Water

- CC Chemical Production
- CI Chlorine Injection
- CW Circulating Water
- TB Cooling Tower Makeup

and Blowdown

13-E-MAB-001

System Designators (2)

13-E-MAB-001

Auxiliary Steam

AS Auxiliary Steam FT Steam Generator Feedwater Pump Turbine

Heating, Ventilation, Air-Conditioning (HVAC)

- **CL** Containment Leak Test
- CP Containment Purge
- EC Essential Chilled Water
- HA HVAC-Auxiliary Building
- HC HVAC-Containment
- HD HVAC-Diesel Generator Building
- HF HVAC-Fuel Building
- HJ HVAC-Control Building
- HN HVAC-Ancillary Buildings
- HP Containment Hydrogen Control
- HR HVAC-Radwaste Building
- HS HVAC-Miscellaneous Site Structures
- HT HVAC-Turbine Building
- WC Chilled Water

Radwaste

GR	Gaseous Radwaste
LR	Liquid Radwaste
RD	Radioactive Waste Drains
RE	Radiation Exposure and Maintenance
System	
RL	Radioactive Laundry
SR	Solid Radwaste
<u>Fuel Oil</u>	
DF	Diesel Fuel Oil and Transfer
Cooling W	/ater
EW	Essential Cooling Water
NC	Nuclear Cooling Water
РС	Fuel Pool Cooling and Cleanup
PW	Plant Cooling Water
SP	Essential Spray Ponds
ТС	Turbine Cooling Water

System Designators (3) ^{E001}

Services

DG	Diesel Generator Systems
DS	Domestic Water
DW	Demineralized Water
FP	Fire Protection
GA	Service Gases (N2 and H2)
IA	Instrument and Service Air

Drains

СМ	Chemical Waste
OW	Oily Waste and Nonradioactive Waste
ST	Sanitary Drainage and Treatment

Miscellaneous

FH	Fuel Handling (Nuclear)
FX	Fuel Handling Operations
ZA	Auxiliary Building
ZC	Containment
ZF	Fuel Building
ZG	Diesel Generator Building
ZJ	Control Building
ZM	Main Steam Support Structure
ZR	Radwaste Building
ZT	Turbine Building
ZY	Outside Areas

13-E-MAB-001

ELECTRICAL SYSTEMS

Generation and Transmission

MA	Main Generation
MB	Excitation and Voltage
Regulation	
PB	4.16KV Power
PE	Standby Generation
PG	480V Power Switchgear
РН	480V Power, MCC
РК	125V DC Power
PN	Instrument AC Power

System Designators (4) ^{€001}

Non-Class IE Power Systems

- NA 13.8KV Power
- NB 4.16kV Power
- NG 480V Power Switchgear
- NH 480V Power, MCC
- NK 125V DC Power
- NN Instrument AC Power
- NQ Uninterruptible AC Power

Miscellaneous Systems

- QA Normal Lighting (Includes 208V/120 Power)
- QB Essential Lighting
- QC Yard, Roadway, and Fence Lighting
- QD Emergency Lighting
- QE Public Offsite Communications
- QF In-Plant Communications
- QG Grounding (entire site ground grid-personnel safetv)
- QH Cathodic Protection
- QJ Freeze Protection
- QK Fire Detection and Alarm
- QL Private Offsite Communications
- QM Special Process Trace Heating

13-E-MAB-001

CONTROL SYSTEMS

SV

- ES Safety Equipment Status System RG **Meteorological Instrumentation** RI **Plant Computer** RK **Plant Annunciator Main Control Board** RM SA **Engineered Safety Features Actuation** SB **Reactor Protection** RI **In-Core Instrumentation** SE **Ex-Core Neutron Monitoring** SF **Reactor Control** SM Seismic Instrumentation SK **Plant Security** SQ **Radiation Monitoring**
 - Loose Parts and Vibration Monitoring

Drawing Type Designators **E001**

DRAWING TYPE DESIGNATORS

NUCLEAR

MECHANICAL

- F- BASIC FLOW P- PIPING AND
- INSTRUMENTATION DIAGRAM
- **R RADIATION**

CIVIL STRUCTURE

- A– GENERAL
- C- CIVIL
- S- STRUCTURAL

ELECTRICAL

ABCDEGJLP UJEC	ONE LINE DIAGRAM ELEMENTARY CONDUIT AND TRAY LOGIC FIRE AND SAFETY GROUNDING COMMUNICATIONS LIGHTING EQUIP. REQ. AND ARRANGEMENTS UNDERGROUND CIRCUIT WIRING DIAGRAMS (PDMS) CONTROL WIRING DIAGRAMS
C D- E- F- I- K- L- S-	CONTROL DIAGRAMS/FLOW CHARTS INSTALLATION DETAIL LOOP FIELD LOCATION INSTRUMENT INDEX LEVEL SETTING DIAGRAM LOGIC PANEL OR CONSOLE SPECIAL DRAWINGS

A– AREA

- **B- GENERAL** ARRANGEMENT
- C– HVAC
- D- PIPING (PROCESS)
- E- PLUMBING (WASTE AND
- SANITARY) F- BASIC FLOW
- G- MISCELLANEOUS
- HEAT BALANCE OR H-WRF
- I- EQUIPMENT INDEX
- J- SPOOL DRAWINGS
- L- EQUIPMENT LOCATION
- P- P&ID
- U- STARTUP PIPING
- Y- YARD PIPING

PLANT DESIGN

- A- AREA
- **B- GENERAL ARRANGEMENT**
- C- HVAC (AREA ONLY)
- E- PLUMBING (AREA ONLY)
- F- ISOMETRICS
- G- MISCELLANEOUS
- L- EQUIPMENT LOCATION
- P- P&ID
- **R RADIATION**

PROCESS DESIGN (WRF)

- A- PROCESS FLOW
- B- GENERAL ARRANGEMENT & EQUIP LOCATION
- D- DEMONSTRATION PLANT
- G- DETAILS & MISCELLANEOUS
- P- P&ID

ARCHITECTURAL

D- ARCHITECTURAL DESIGN

Given the drawing number 01-E-CHB-004 Which one of the following designates the discipline of the drawing?

E
CH
B
01

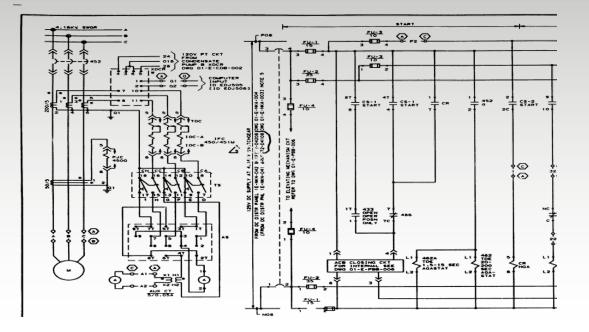
0 0

EO02 State why As-Built drawings are the most current available type drawing.

Timing of Updates:

- A. Key Drawings are updated within 14 working days of a change
- B. Other drawings identified as Non Key Drawings are updated according to management expectations, which is currently 60 days.

Key Drawings include


- 1. Mechanical, Nuclear, and Plant Design P & ID's
- 2. Electrical
 - a) Single Line
 - b) Elementary
 - c) Emergency Lighting

EO03 State the reason that As-built drawings are preferred over Design drawings for use in the plant.

Design vs. As-built:

As-built drawings are updated much faster than design drawings, (24 hours vs. 60 days).

Because of the quick update, As-built drawings typically do not have to be used with other documents, i.e. EDC's

13-E-EDB-001

EO04 State where the standard numbering and symbols used on electrical or mechanical drawings at PVNGS can be found.

Mechanical Drawings

Drawings 13-M-ZZP-001 through 004 list the standard symbols used.

Drawing 13-M-ZZP-004 lists abbreviations used.

Electrical Drawings

Drawings 13-E-ZZB-001 through 003 list the standard abbreviations used.

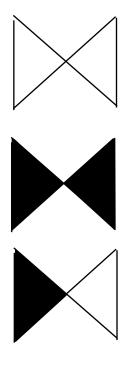
Drawing 13-E-ZZB-004 lists the General Function Numbers used.

86 = Locking-Out Relay

Drawing 13-E-ZZB-005 through 007 is the General Symbol List.

EO05 State the purpose of a Piping and Instrument Diagram.

Purposes of a Piping and Instrument Diagram:


- A. Shows the functional relationship between components of a piping system
 - 1. Energy connections between components
 - 2. Piping design requirements
 - 3. Flow direction
- **B.** Does not show location or configuration
- C. No attempt to show lines or equipment to scale.
- D. Provides information on how something is done in that system.

EO06 Identify and describe the use of each Piping and Instrument Diagram Symbol used at PVNGS.

Use of each Piping and Instrument Diagram symbol used at PVNGS:

Equipment: (From left column of 13-M-ZZP-001)

- 1. Horizontal Centrifugal Pump
- 2. Vertical Pump
- 3. Positive Displacement Pump
- 4. Heat Exchangers
 - a) U-Tube
 - b) Straight Tube
- 5. Ion Exchanger
- 6. Tanks
- 7. Reciprocating Air Compressor
- 8. Mixer

Open During Normal Operation

Closed During Normal Operation

Throttled During Normal Operation

Piping Code Classification First Letter

INFORMATION IS FOUND IN 13-P-ZZG-012

FIR	<u>ST LETTER - PRIM</u>	ARY RATING
A		SPECIAL VALVE RATING
B		2500#
C		1500#
D	n de la constante de la consta La constante de la constante de	900#
E	in the internet of the second seco	600#
F		400#
G		300#
H		150#
J		125# ANSI B16.1
K		
L		175# WOG UNDERWRITER'S LABORATORIES, INC. 255# ANSI B16.1
M		200# WOG
N		150# WOG
P		
R		
S		75# AWWA (OR MANUFACTURER'S RATING)
Ť	-	50# AWWA (OR MANUFACTURER'S RATING)
X		25# AWWA (OR MANUFACTURER'S RATING)
\$		GRAVITY RATING
7		GENERAL USE AND DESIGNATED ON CALL SHEETS
2		AS APPLICABLE

Piping Code Classification Second Letter

INFORMATION IS FOUND IN 13-P-ZZG-012

SECON	D LETTER -	MATERIAL
A		ALLOY STEEL
В		CARBON STEEL
Ċ		AUSTENITIC STAINLESS STEEL
Ď		COPPER, BRASS OR BRONZE
F		ALUMINUM
F		CARBON STEEL - COOPER BEARING
G	_	CARBON STEEL - LINED
H	_	CAST IRON
i i		CONCRETE PIPE
ĸ		VITRIFIED CLAY PIPE
i i i i i i	_	CARBON STEEL - IMPACT TEST
M		CAST IRON - HIGH SILICON
N	an a	CARBON STEEL - GALVANIZED
P		CAST IRON - CEMENT LINED
ò	_	ASBESTOS - CEMENT
R	_	DUCTILE IRON
ŝ		90-10 CUNI
Ť		CHLORINATED POLYVINYL CHLORIDE (CPVC)
- Ú	_	FIBERGLASS REINFORCED PLASTIC (FRP)
x	-	SPECIAL MATERIAL SEE CLASS SHEET
7	_	AS APPLICABLE
-	a,	

INFORMATION IS FOUND IN 13-P-ZZG-012

THIRD LETTER - APPLICABLE CODES

A		NUCLEAR POWER PLANT COMPONENTS, ASME B&PV CODE,
		SEC. III, CLASS 1
В	• •	NUCLEAR POWER PLANT COMPONENTS, ASME B&PV CODE,
		SEC. III, CLASS 2
С	<u> </u>	NUCLEAR POWER PLANT COMPONENTS, ASME B&PV CODE,
		SEC. III, CLASS 3
D	— · · · · · · · · · · · · · · · · · · ·	POWER PIPING CODE, ANSI B31.1
F	_	NATIONAL FIRE PROTECTION ASSOCIATION CODE
G	-	NATIONAL OR APPLICABLE PLUMBING CODE
H	<u> </u>	Power Boilers, ASME B&PV Code, Sec. 1
J	_	AMERICAN WATER WORKS STANDARD
J K	- · · ·	AS APPLICABLE
U	-	FIBER GLASS REINFORCED PLASTIC PRESSURE VESSEL, ASME B&PV CODE, SEC.X

FORTH LETTER - VARIABLE

A -	Basic Pipe Material Classification
B through H -	See Individual Material Class Sheet for Variation
R,S,T,and U -	Basic Pipe Classification - Water Reclamation Plant

EO07 Locate and find the latest revision of a single line electrical drawing

The first step in locating a drawing is to have some information about what you are looking for. Identifying or picking the system designator is a good place to start.

Use the system designator and 'build' the drawing number.

You know what unit you are in, 01 for unit 1 etc. If it is mechanical, you know that it will be the mechanical discipline (M) 01-M, the system designator (CH for example), 01-M-CH, if it is a piping drawing, then it will have a (P), 01-M-CHP, and you start with drawing sequence number 001. So the number for the first CH system As-Built P & ID in Unit 1 is, 01-M-CHP-001.

Using an Electrical Equipment number:

For the Load Centers (LC) and Motor Control Centers (MCC) the sequence number can USUALLY be related to the Load Center or MCC number.

Example: Load Center 1-E-NGN-L05 is found on Drawing 01-E-NGA-005.

Motor Control Center M21 is located on Drawing 01-E-NHA-021

This is easy to tell because the title of the drawing 01-E-NHA-021 is (Single Line Diagram 480 V Non-Class IE Power System Motor Control Center IE-NHA-M21

Using SWMS

Another way to identify a drawing for a system or a component is to use the SWMS.

You will be given access to SWMS system. You will need training so you can get access.

There are various computer workstations in the plant for you to use. There are computers set up in the AO staging area for example.

SWMS is a computerized system designed to manage station work activities and Equipment ³⁴ Design Data.

Vendor Tech Manuals

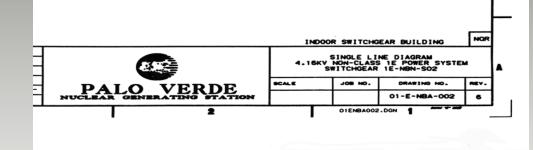
EO09 Given a Single Line electrical drawing, locate, and describe the information found in the following:

- The Title Block
- The Legend
- The Functional Table
- The Notes Section

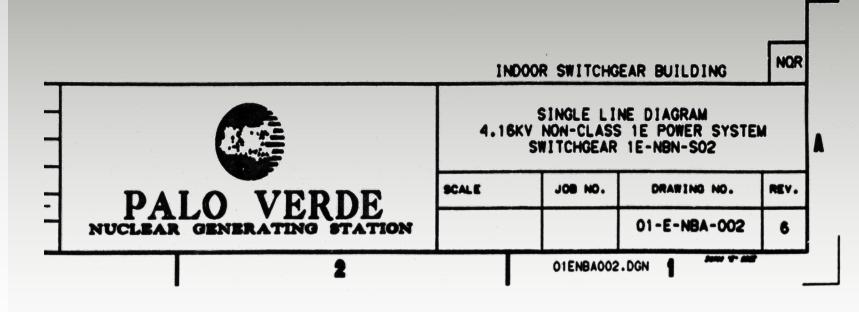
The Title Block:

Important features include:

- **1. Drawing Number**
- 2. Description
- 3. Revision
- 4. Quality Class Indicator (highest class on Drawing):

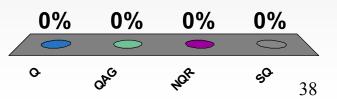

a) Q - component necessary for nuclear safety of the public.

b) QAG - component necessary for continued full power operation OR safety of plant personnel. It will be treated like a Q system or component.


- NQR components not quality related. C)
- Will indicate the highest class of any component on the drawing. d)

'S' Any structure, system or component not designated quality class 'Q' or e) 'NQR'.'S' is no longer used but still appears on some drawings. 36

Revision History. f)


Title Block for Electrical Single Line Diagram

E009

Given the 01-E-NBA-001 print, which one of the following is the quality class indicator?

Q
QAG
★3. NQR
4. SQ

Legend on 01-E-NBA-002

The Legend: Example 01-E-NBA-002 (C-7)

A table which gives a description of each device number used on the single line drawing. It gives information on the manufacturer, type and usually model number. This information can be used in gaining more information on individual devices from vendor manuals.

			LEGEND		
FUNCT . MER TYPE		TYPE	DESCRIPTION	REMARKS	
4275	GE	144	BUS UNDERVOLTAGE RELAY, 55-1404	121AV53K1A	
427/447		CVQ	BUS UNDERVOLTAGE & NEGATIVE SEQUENCE ALARM RELAY, 100V	ST.NO.2938146A10	
427-11,21	ITE	27H	SUPPLY TRANSFER BLOCKING UNDERVOLTAGE RELAY, D.O. 60-110V	CA1. NO. 2118017	
446	GE	IJC	PHASE CURRENT UNBALANCE RELAY	MOD. 121JC51B3A	
4500	GE	PJC	INSTANT GROUND FAULT OVERCURRENT RELAY, 0.5-2.0 RANGE	MOD. 12PJC11AV1A	
450/451	GE	IFC	MOTOR PHASE OVERCURRENT RELAY, 2.5-7.54 RANGE 2-84 ITH & 6-1504 IT	MOD. 12IFC66K1A	
451	GE	IFC	BUS FEEDER PHASE OVERCURRENT RELAY, 1.0-12A	MOD. 121FC77A1A	
425	W house	CVE	SUPPLY TRANSFER SYNCHRONISM CHECK RELAY, 120V. 20° CALIBRATION	ST.NO. 293828540	
451N	GE	IFC	BUS FEEDER NEUTRAL OVERCURRENT RELAY, 0.5-4.04	MOD.121FC53A2A	
451X	GE	NGA	AUXILIARY ALARM RELAY, 1254 DC. 2 PDT CONTACT	MOD. 12NGA15A24F6	
451NT	OE	IFC	BUS TIE NEUTRAL OVERCURRENT RELAY,0.15-0.64	MOD. 121FC53A6A	
486	GE	HEA	AUXILIARY TRIPPING LOCKOUT RELAY, HAND RESET, 125V.DC	MOD . 12HEA618235	
487	GE	PJC	MOTOR SELF BALANCING PRIMARY CURRENT DIFFERENTIAL RELAY. 0.5-2.0A	MOD.12PJC11AV1A	
427-5×1,5×2	GE	HFA	AUXILIARY RELAY 125V DC COIL	MOD. 12HFA51A42F	
AS	GE	SBM	AMMETER SWITCH	MOD. SBM10SP017	
VS	GE	SBM	VOLTMETER SWITCH	MOD. SEM10AB286	
XDCR/W	SC1		WATT TRANSDUCER 38,2 ELEMENT, 0.25% ACCURACY, 0-1MA OUTPUT	MOD.XL31K5A4	
A	GE	AB-40	ANMETER		
V	GE	AB-40	VOLTMETER		
488×	OE	HGA	BREAKER COOLING FAN STARTING RELAY, 44,60HZ	MOD. 12HGA14AF137	
XDCR-V	SC1		VOLT TRANSDUCER, 0.25% ACCURACY, 0-1 MA OUTPUT	MOD. VT-110A2	
427-5×.5Y	GE	HFA	AUXILIARY RELAY 1250 DC COIL	12HFA151A2F	

4.16 kV Electrical Function Table

From 01-E-NBA-001

FUNCTIONAL TABLE				
CODE	DESCRIPTION			
F-A	ANNUNCIATOR			
F-B	TRIPS 4.16KV BUS FEEDER BREAKER			
F-C	TRIPS 4. 16KV FEEDER BREAKER			
F-Q	INPUT TO COMPUTER			
F-\$	TRIPS 4.16KV SELECTED BREAKER			
F-H	STARTS BREAKER COOLING FAN			
F-K	PERMITS SUPPLY AUTO TRANSFER			
F-N	BLOCKS SUPPLY AUTO TRANSFER			

EO09

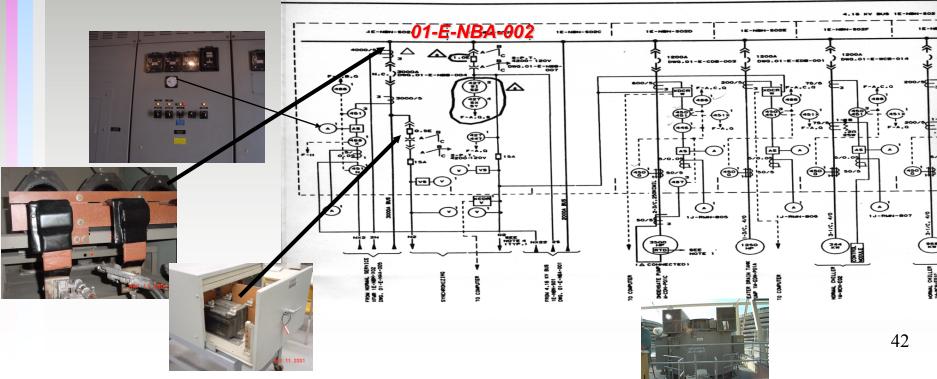
Notes from 01-E-NBA-002

The Notes Section:

- 1. This section gives information on non-standard conditions on the Drawing, or amplifying remarks about certain devices.
- 2. For example, Drawing 01-E-NBA-002 has no functional table. Note 2 states 'For relay functional table see DWG 01-E-NBA-001.

NOTESI

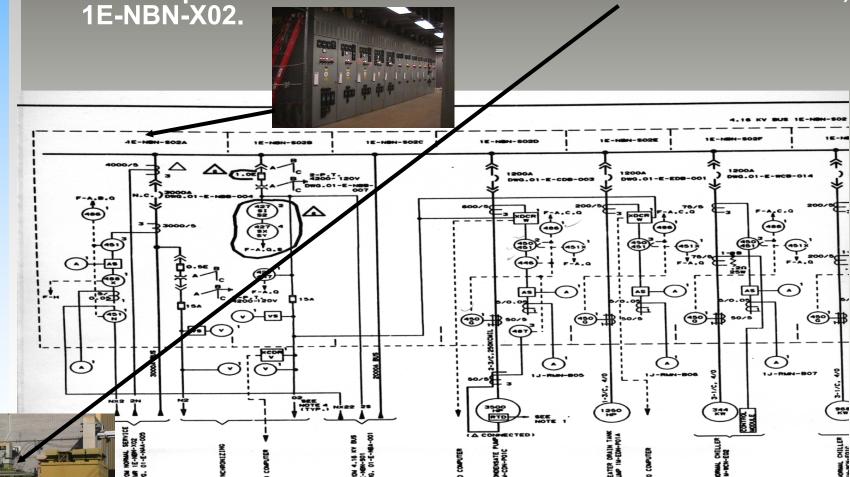
- 1. STATOR RESISTANCE TEMPERATURE DETECTOR TO BE USED FOR ALARM SCANNER. (COMPUTER).
- 2. FOR RELAY FUNCTIONAL TABLE SEE DWG.01-E-NBA-001
- 3. ALL AUXILIARY CT'S 5/0.05A FOR AMMETERS ARE CONNECTED ON PHASE '8'.
- 4. THIS CODE IS USED TO IDENTIFY THE CONTINUATION OF THIS CIRCUIT ON THE REFERENCE DRAWING.
- SHALL BE CONNECTED ON PHASES A & C.
- 6. ALL INSTRUMENTS EXTERNAL TO SWITCHGEAR ARE MOUNTED ON CONTROL BOARD 1J-RMN-BO1 EXCEPT AS NOTED.
- 7. ALL POWER AND CONTROL CABLES ARE TOP ENTRY. UNLESS OTHERWISE INDICATED "BOT" DESIGNATION FOR POWER CIRCUIT ONLY.
- 6. FOR LEGEND AND GENERAL NOTES REFER TO DWG. 13-E-ZZB-001 THROUGH 007.


41

EO10 Given a single line electrical diagram, locate or and trace the following:

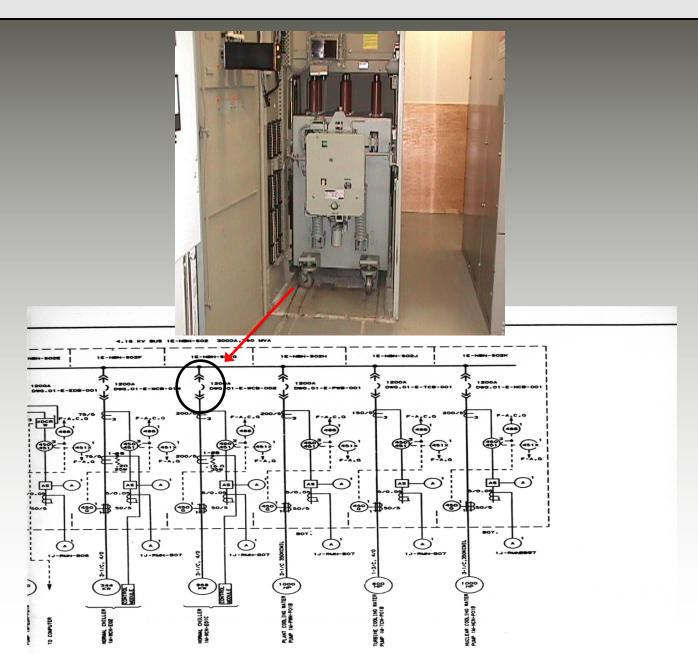
- The Main Power Path
- Protection and Indication Path

The Main Power Path


The main power path is indicated by the bold lines on the single line drawing. Typically, the main power path will include the bus supply; both normal and alternate if applicable; the bus itself, and each of the bus loads.

01-E-NBA-002 Left Side

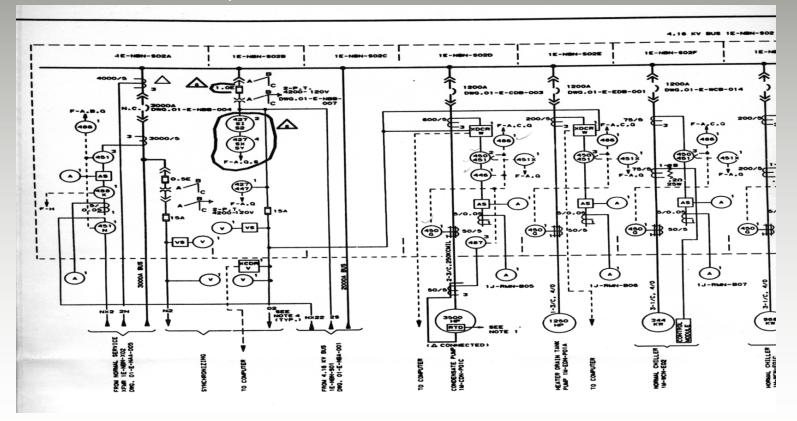
Power inputs to the bus are shown in bold face type at the upper left corner of the Drawing:


Normal power comes from the Normal Service Transformer,

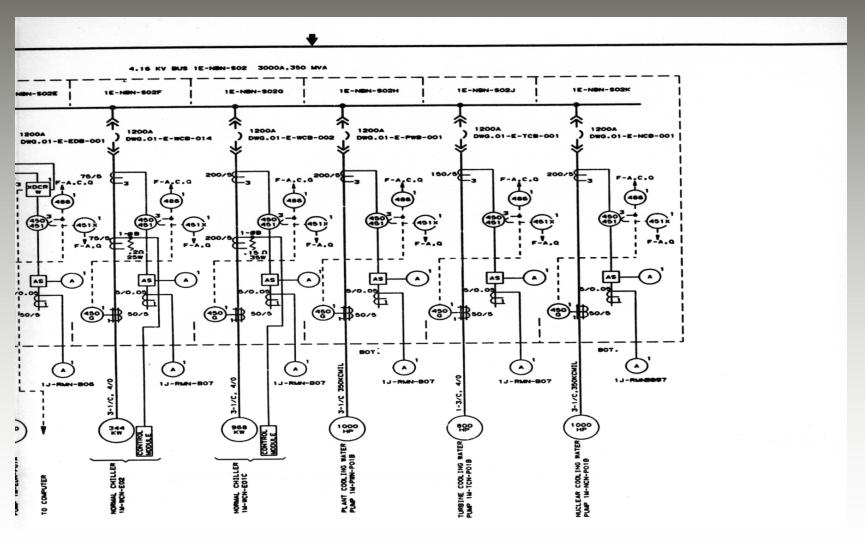
43

E011

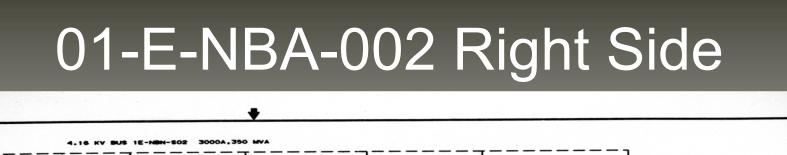
EO11 Given a single line electrical drawing, identify the Components and Symbols located on the drawing.

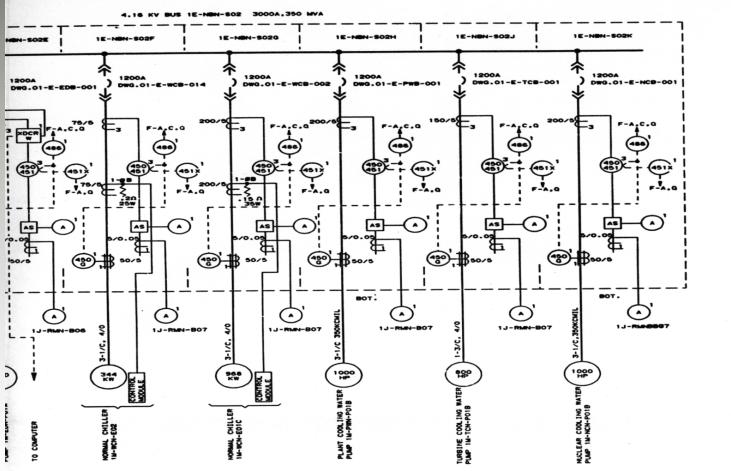

44

01-E-NBA-002 Left Side


EO10

Power inputs to the bus are shown in bold face type at the upper left corner of the Drawing:


Normal power comes from the Normal Service Transformer, 1E-NBN-X02.



01-E-NBA-002 Right Side

EO10

47

E011

Given print 01-ENBA-001, at coordinate G-8 there is a transformer with a number three at the right hand corner. What does this signify?

- 1. There is one transformer that goes around all three phases.
- 2. There is one three phase transformer.
- 3. There is three transformers on the "B" phase.
 - There is one transformer for each of the three phases.

0% 0%

0%

01-E-EDB-006 Title Block

E011

			-	-	NOR
	BECHTEL Los Angeles		HTR EXTN STEA	Y DIAGRAM AM & DRAIN SYSTE CK VALVES 6,27,28,31 & 32	м
ROFILM	ARIZONA NUCLEAR POWER PROJECT	SCALE	JOB NO.	DRAWING ND.	REV.
ENG EOS CHE PRI CAE	PALO VERDE NUCLEAR GENERATING STATION	NONE	10407	01-E-EDB-006	2
	2	-	01EEDBOO6.	DGN 1 34x44 *	E" SIZE

Title Block and Notes:

Notice that this title block indicates that this drawing is for six different valves.

1-J-EDN-UV-25, 26, 27, 28, 31, and 32.

Looking at the drawing you will notice that it has a left half and a right half. Each half displays a valve that is wired a little differently than the other half.

You will have to look at the (NOTES) to what half of the drawing is for what valve.

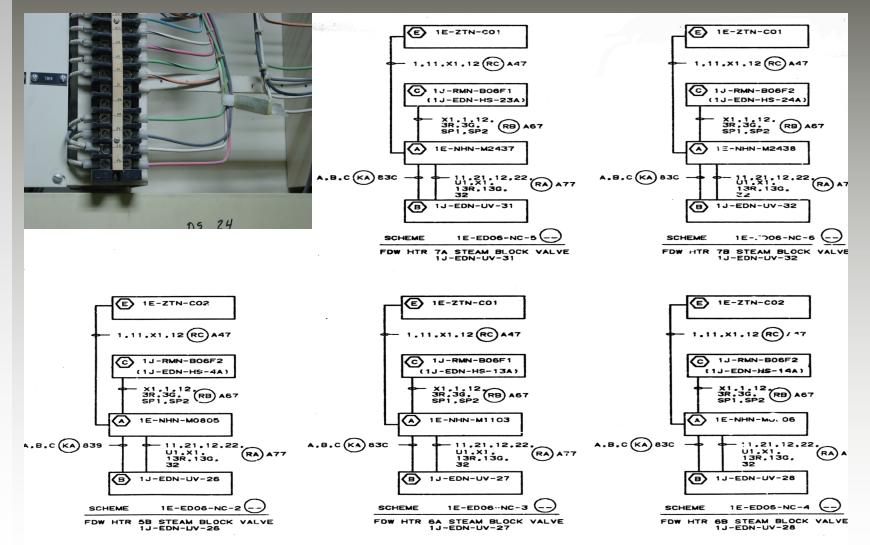
- 1. Note # 3 tells you what valves are covered on this drawing
- Note # 10 says (Elementary diagram shown on the left is for valve 1-J-EDN-UV-25. Valves 1-J-EDN-UV 26, 27, & 28 are similar except as shown or indicated in the cabling block diagram.)
- 3. Note # 11 says (Elementary diagram shown on the right is for valve 1-J-EDN-UV-31. Valve 1-J-EDN-UV-32 is similar except as shown or indicated in the cabling block diagram.)

EO12. Given an Elementary Electrical Drawing, locate and describe the information found in the following:

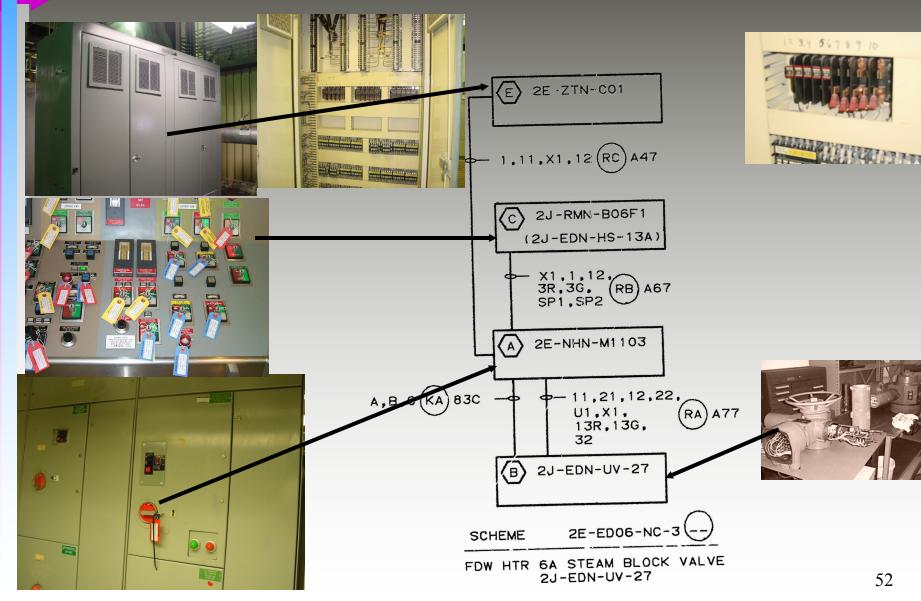
- The Title Block
- The Cabling Block Diagram
- The Switch Contact Scheme

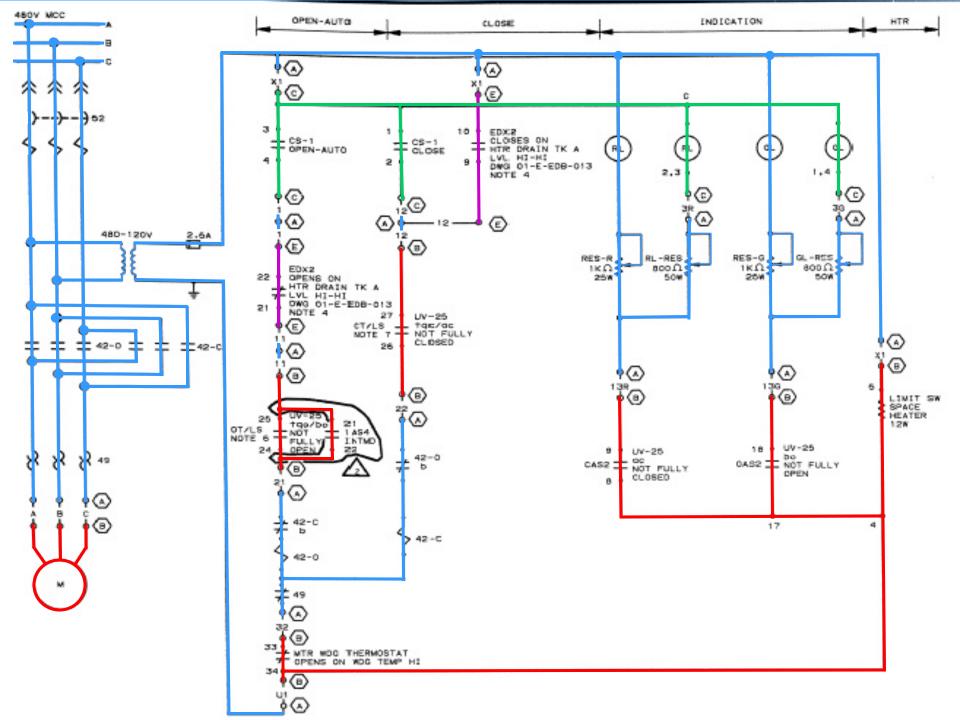
1. The Block Diagram shows the circuit by location and the interconnecting cables. Look at 01-E-EDB-006

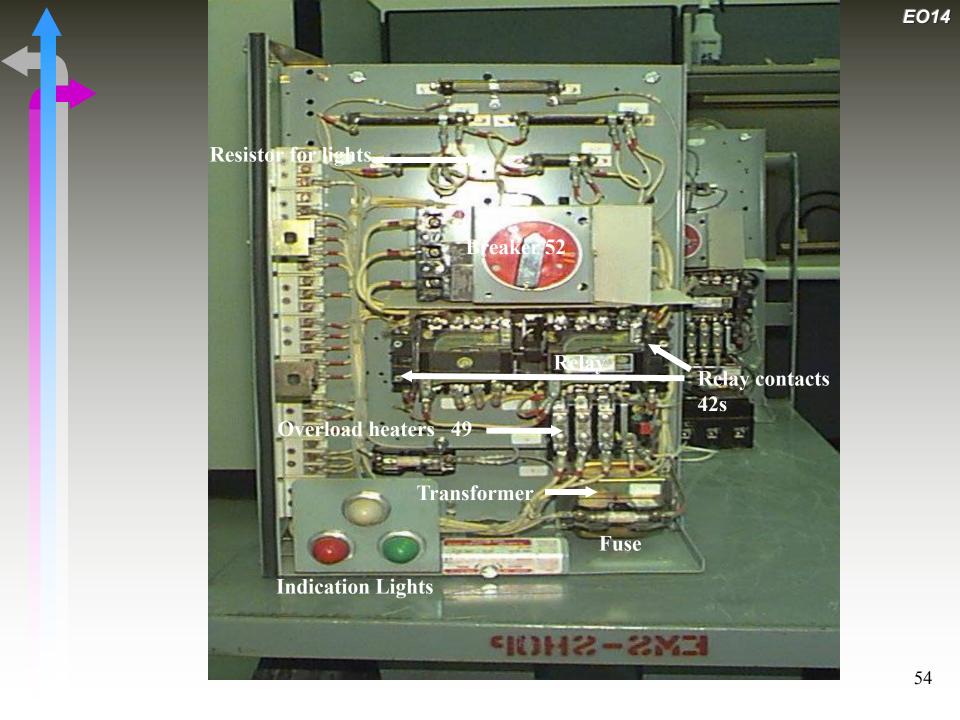
2. Some of the boxes contain information on the instruments and power supplies associated with a particular components diagram.

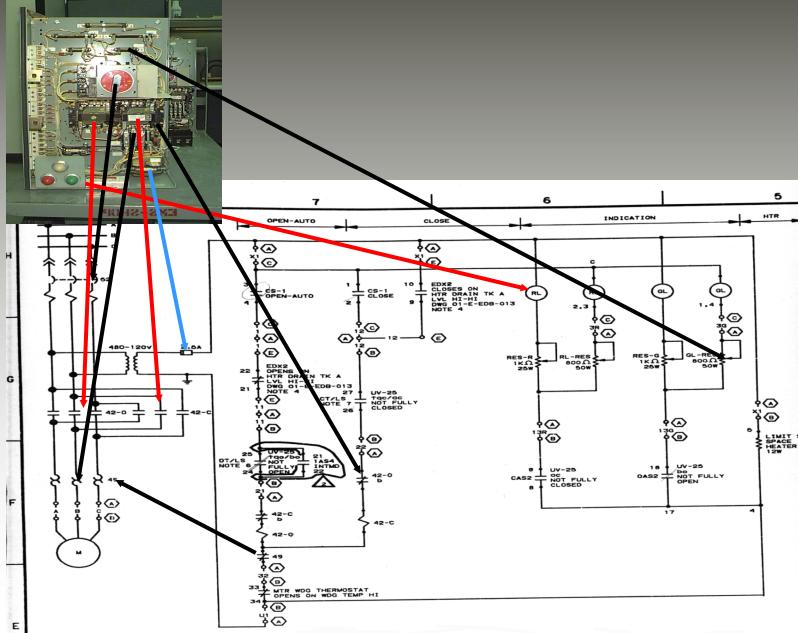

3. The hexes in the boxes identify the box for referencing from the main circuit drawing.

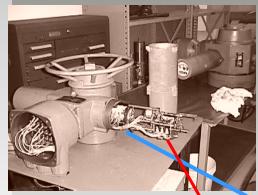
Some Drawings may have more than one block diagram if there are more than one circuit on the drawing, or if the circuit applies to several identical components. Each block diagram is called a SCHEME.


1. The lines connecting the boxes in the block diagrams are cables. The cable code consists of the scheme number plus the individual cable sequence designator.


2. The scheme number is a 9-digit code at the bottom of the block diagram, while the sequence number is the 2-letter code in the circle next to each cable.


01-E-EDB-006 Schemes

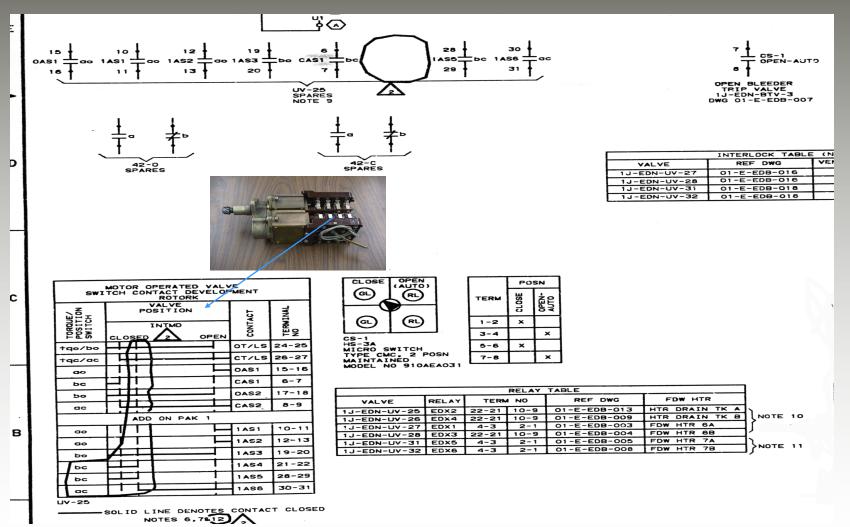

02-E-EDB-006 UV-27 Scheme



<u>01-E-EDB-006</u> Left Side

02-E-EDB-006 Switch Contacts

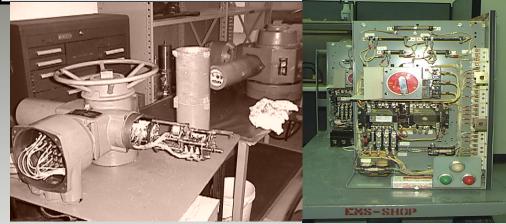
ſ	MOTOR OPERATED VALVE SWITCH CONTACT DEVELOPMENT ROTORK								
	TORQUE/ POSITION SWITCH	CL	VALVE POSITION INTMD CLOSED OPEN			CONTACT	TERMINAL NO		
	tqo/bo	T						OT/LS	24-25
	tqc/ac	T						CT/LS	26-27
	do		1					0AS1	15-16
	bc	口						CAS1	6-7
	bo	╞╧						0AS2	17-18
	ac	†t						CAS2	8-9
		<u> </u>	A	DD ON	PA	< 1			
	ao	П						1AS1	10-11
	ao	1						1AS2	12-13
1	bo	┢	_					1 AS3	19-20
	bc							1AS4	21-22
	bc		_				Ţ	1AS5	28-29
	ac	+1	-				<u> </u>	1AS6	30-31
	UV-25								


HS-3A
MICRO SWITCH
TYPE CMC, 2 POSN
MAINTAINED
MODEL NO 910AEA03

		POSN				
	TERM	CLOSE	OPEN- AUTO			
	1-2	×				
-	3-4		x			
	5-6	×				
	7~8		x			

RELAY TABLE							
VALVE REI		TERM	NO	REF DWG	FDW HTR		
2J-EDN-UV-25	EDX2	22-21	10-9	02-E-EDB-013	HTR DRAIN TK A		
2J-EDN-UV-26	EDX4	22-21	10-9	02-E-EDB-009	HTR DRAIN TK B		
2J-EDN-UV-27	EDX1	4-3	2-1	02-E-EDB-003	FDW HTR 6A		
2J-EDN-UV-28	EDX3	22-21	10-9	02-E-EDB-004	FDW HTR 6B		
2J-EDN-UV-31	EDX5	4-3	2-1	02-E-EDB-005	FDW HTR 7A		
2J-EDN-UV-32		4-3	2-1	02-E-EDB-008	FDW HTR 78		
20 LON OF SE							

SOLID LINE DENOTES CONTACT CLOSED NOTES 6,7%12


01-E-EDB-006 Switch Contacts

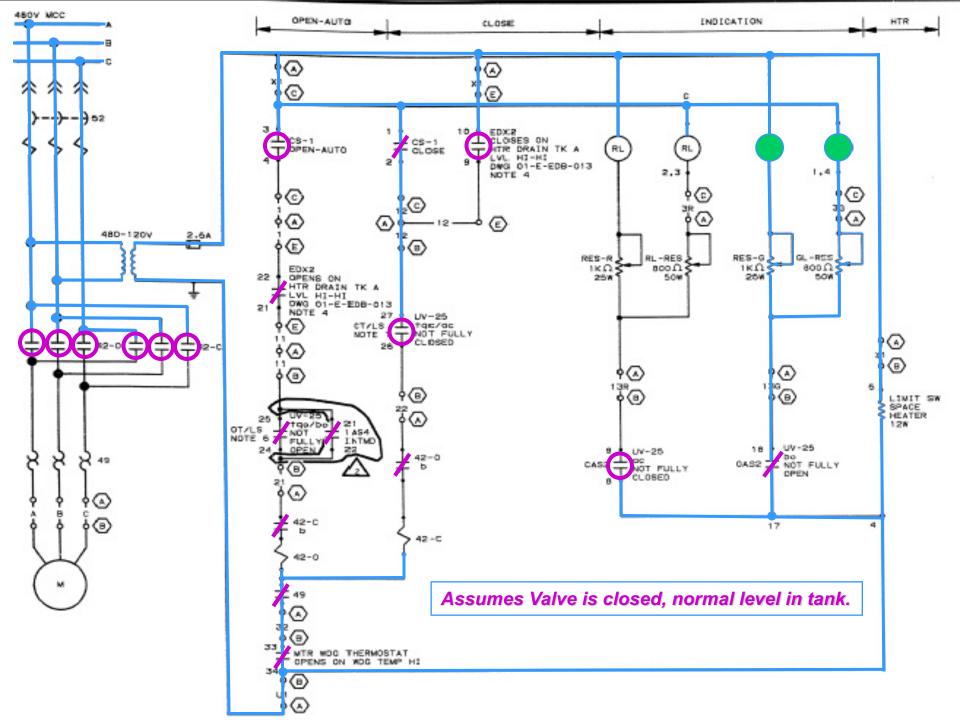
57

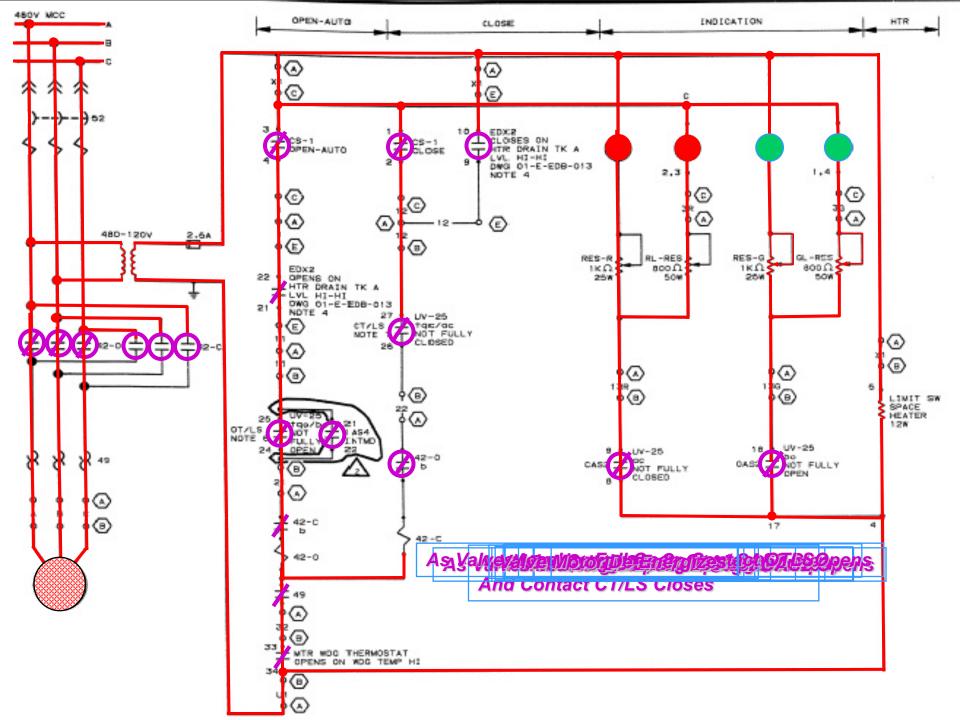
EO13 Given an elementary electrical drawing, locate and trace the following

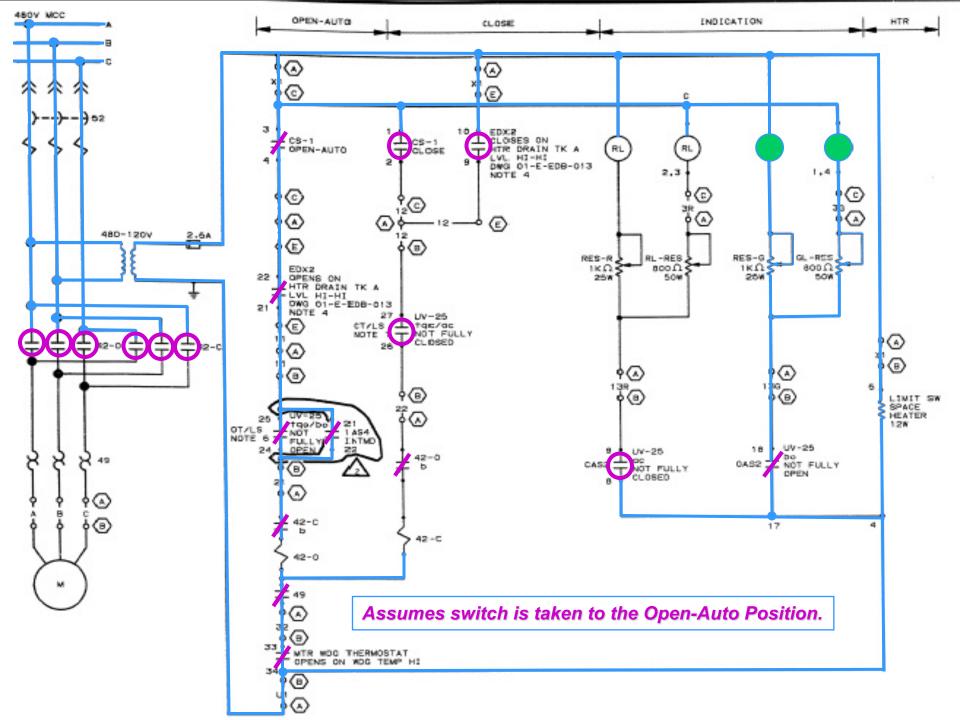
- Protection and Indication Paths
- Steps to Energize or De-energize a load

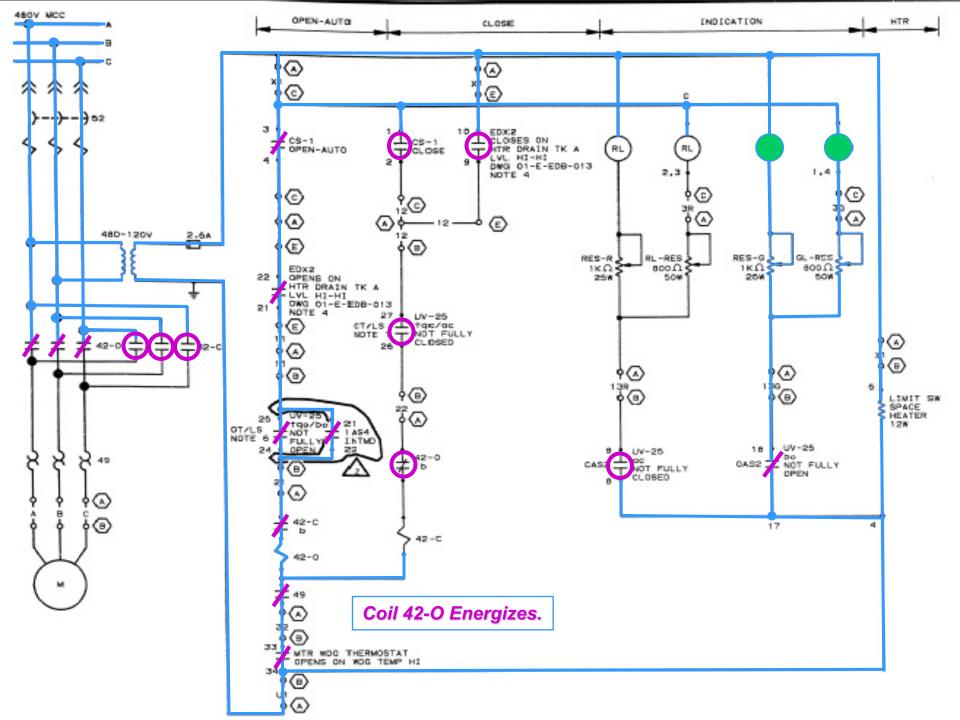
Look at 01-E-EDB-006

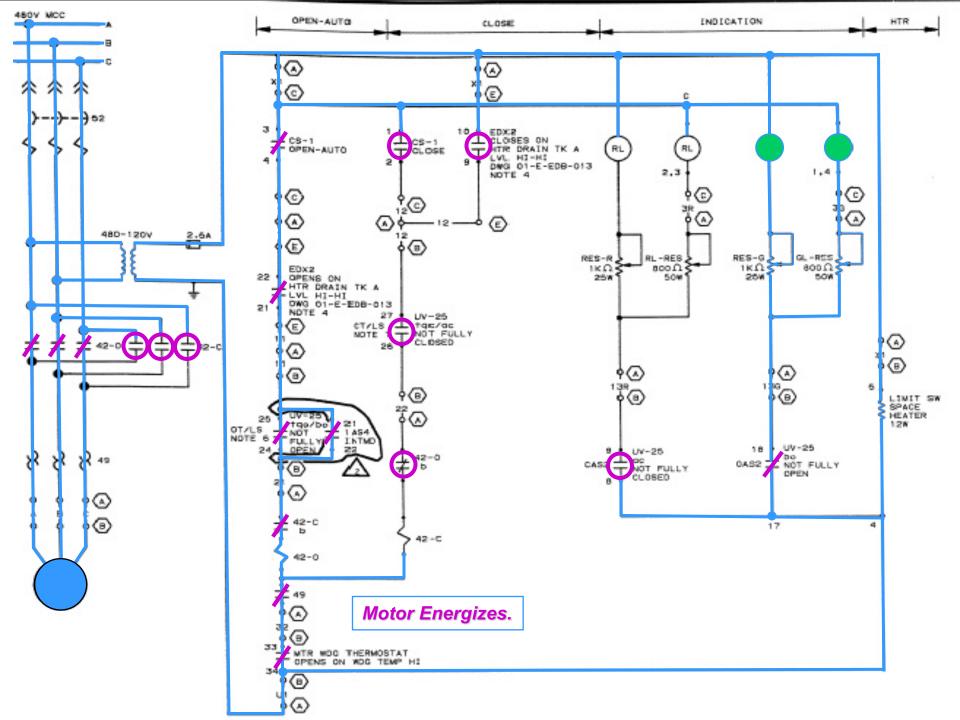
- 1. Most control circuits provide breaker control, local, and remote indication, and breaker/load protection.
- 2. Above the control circuit diagram are markers showing the function of each portion of the control circuit.
- 3. Looking at the drawing on the left, the first part shows the load (In this case the load is a Motor Operated Valve) coming from a 480V MCC, the Control Circuit consisting of the Ground Fault Protection, the OPEN-AUTO function, the CLOSE function, the INDICATION, and the Heater (HTR)
- 4. The control circuit is usually made up of sets of relays and contacts, which operate, energize, and de-energize the load.
- 5. The actual relays and contacts may be in more than one location. To identify the locations, the hexes from the cabling block diagram are used with the wire letters written between the hexes.

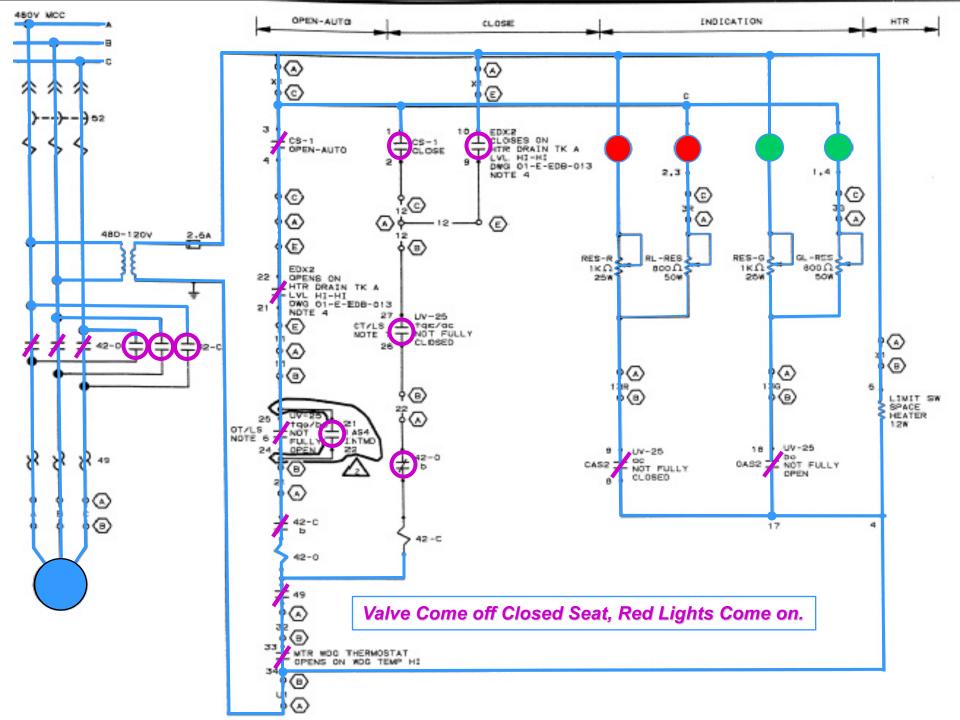

EO14 Given an elementary electrical drawing, identify the Components and Symbols located on the drawing.

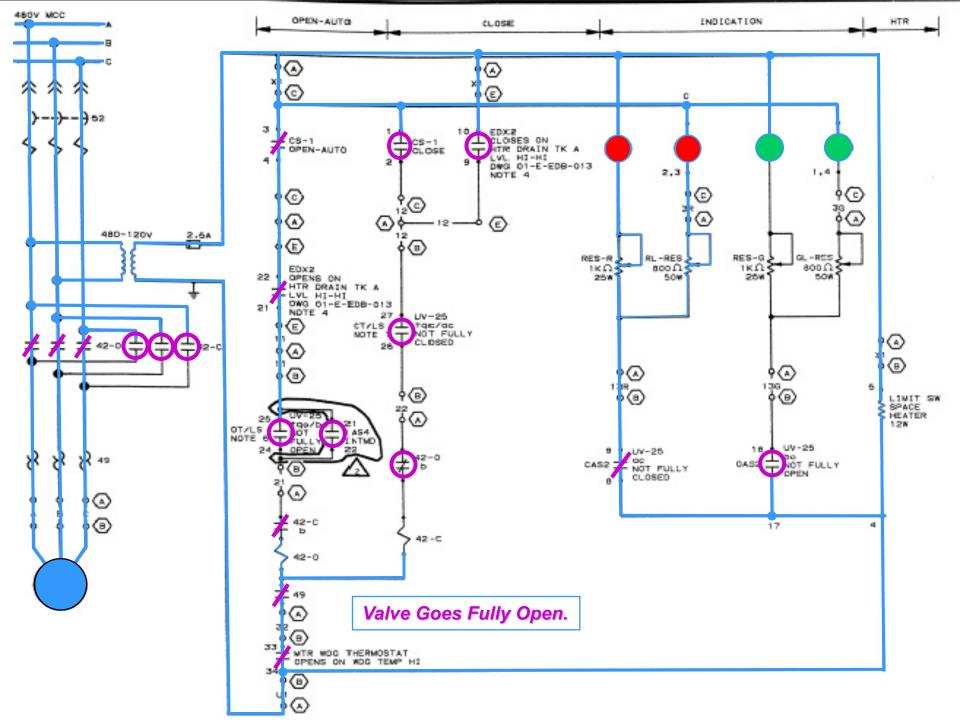

General:

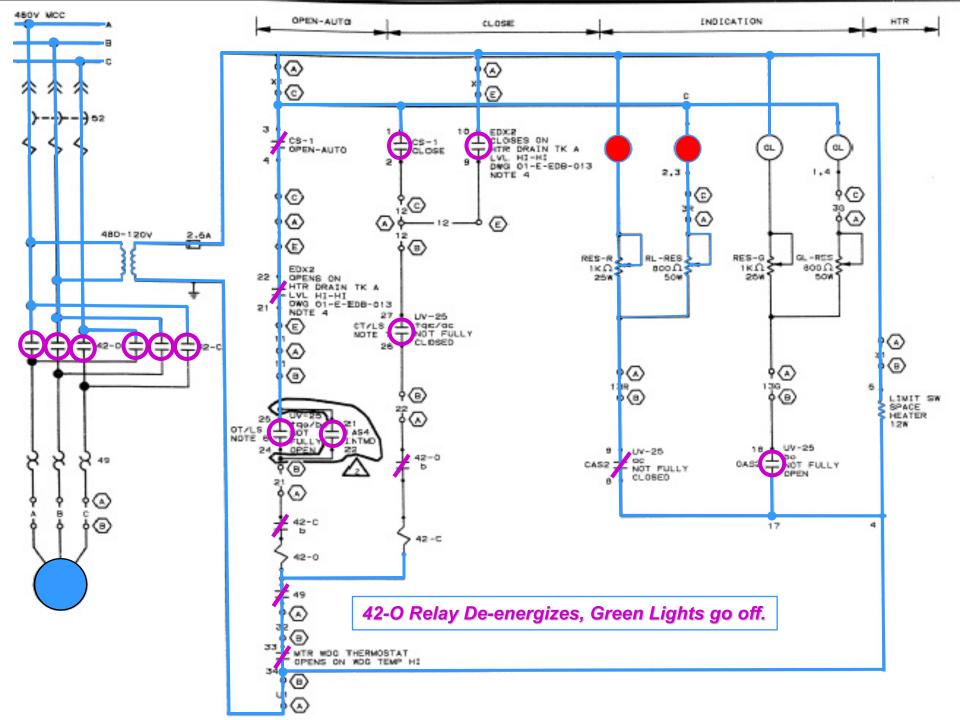

Relays:

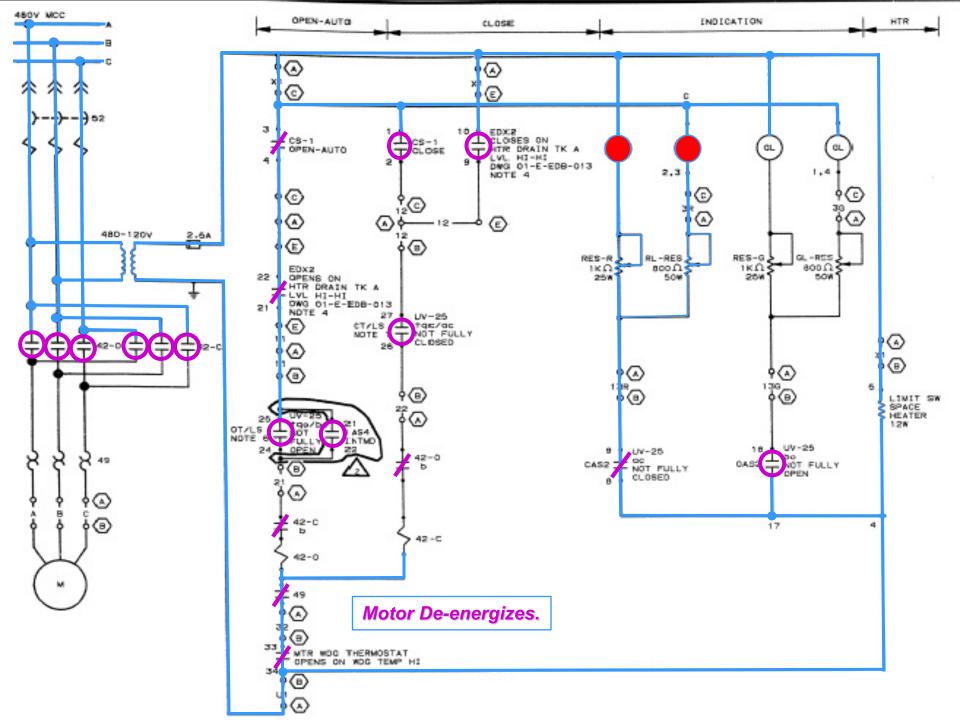

- 1. Relays are electromagnets made from a coil, which act to move contacts. When the contacts move they either open or close, depending on their type.
- 2. There are some relays which have a time delay associated with it. The delay is in the energizing or deenergizing of the relay or opening and closing of the contacts.
- 3. The time delay contacts/relays are indicated by:
- TDC -Time delay to Close
- TDD -Time delay to De-energize
- TDE -Time delay to Energize
- TDO -Time delay to Open
- Some relays have what is called a "seal in" feature associated with them. This feature allows a relay to remain energized if the parameter which

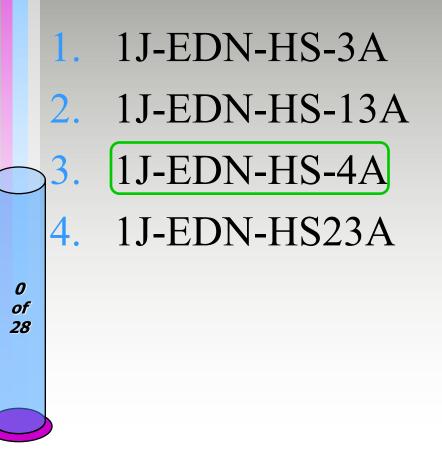


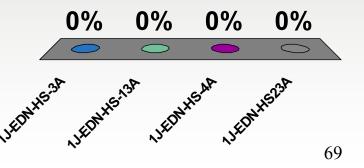


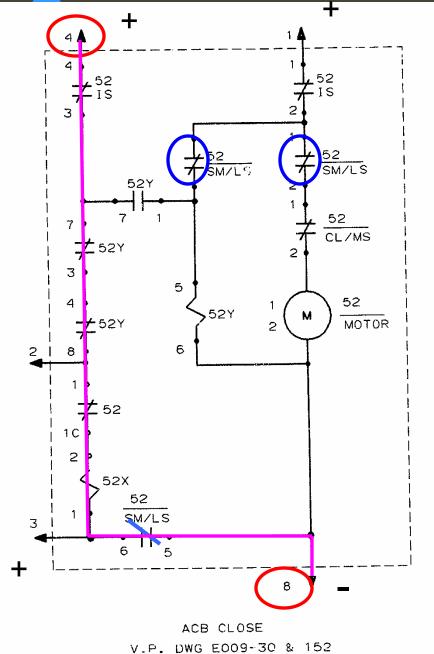












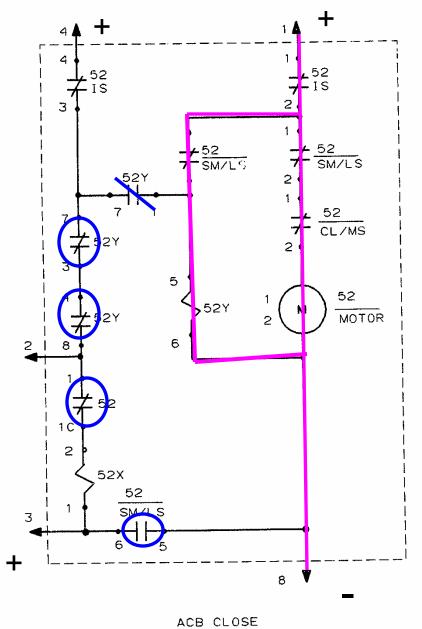
Which one of the following is the handswitch designation for 1J-EDN-UV-26?

From Closing Circuit

Closing Springs charged, pump started

DEVICE DESIGNATION

- 52X __ SPRING RELEASE COIL OPERATES LATCH WHICH RELEASES CLOSING SPRING TO CLOSE 52.
- 52/IS -- INTERLOCK SWITCH CLOSED WHEN 52 IS IN FULLY RAISED OR FULLY LOWERED POSITION.
- 52Y __ ANTI PUMP RELAY.
- 52 -- AUXILIARY DRAWOUT SWITCH CONTACTS.
- 52 LIMIT SWITCH FOR SPRING CHARGING MOTOR. CONTACTS 5M/LS 1-2,3-4,0PEN AND CONTACT 5-6 CLOSED WHEN SPRING ARE FULLY CHARGED.
- 52 CLOSING LATCH MONITORING SWITCH IS CLOSED WHEN LATCH IS CAPABLE OF BLOCKING FULLY CHARGED CLOSING SPRINGS.
- M CLOSING SPRING CHARGING MOTOR.
- 52/TC BREAKER TRIP COIL.

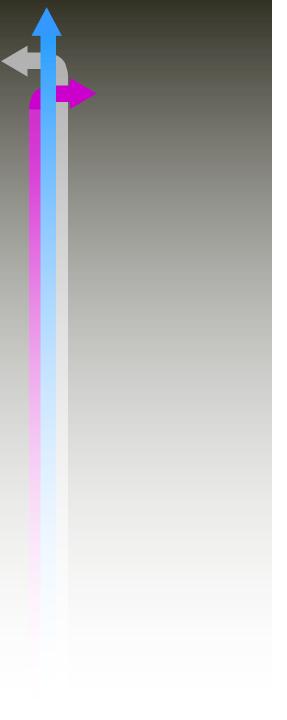

75M - ELEVATING MOTOR.

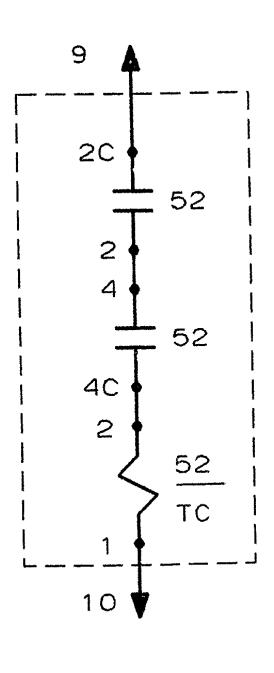
75CS -- LOCAL SELECTOR SWITCH WITH RAISE, LOWER AND OFF POSITION.

75 -- MERCURY CLUTCH SWITCH OPEN IN DISENGAGED CLUTCH SW POSITION.

- 52H -- MERCURY POSITION SWITCH OPEN, ONLY IN UP EXTREME RAISED POSITION OF ACB.
- 52H MERCURY POSITION SWITCH OPEN, ONLY IN DOWN EXTREME LOWER POSITION OF ACB.

From Closing Circuit

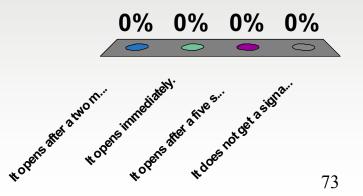



Pump started, closing springs charging

DEVICE DESIGNATION

- 52X __ SPRING RELEASE COIL OPERATES LATCH WHICH RELEASES CLOSING SPRING TO CLOSE 52.
- 52/IS -- INTERLOCK SWITCH CLOSED WHEN 52 IS IN FULLY RAISED OR FULLY LOWERED POSITION.
- 52Y ___ ANTI PUMP RELAY.
- 52 -- AUXILIARY DRAWOUT SWITCH CONTACTS.
- 52 LIMIT SWITCH FOR SPRING CHARGING MOTOR. CONTACTS 5M/LS - 1-2,3-4,0PEN AND CONTACT 5-6 CLOSED WHEN SPRING ARE FULLY CHARGED.
 - 52 CLOSING LATCH MONITORING SWITCH IS CLOSED WHEN
- CL/MS LATCH IS CAPABLE OF BLOCKING FULLY CHARGED CLOSING SPRINGS.
- M CLOSING SPRING CHARGING MOTOR.
- 52/TC BREAKER TRIP COIL.
- 75M ELEVATING MOTOR.
- 75CS -- LOCAL SELECTOR SWITCH WITH RAISE, LOWER AND OFF POSITION.
- 75 -- MERCURY CLUTCH SWITCH OPEN IN DISENGAGED CLUTCH SW POSITION.
 - 52H -- MERCURY POSITION SWITCH OPEN, ONLY IN EXTREME RAISED POSITION OF ACB.
 - 52H MERCURY POSITION SWITCH OPEN, ONLY IN DOWN EXTREME LOWER POSITION OF ACB.

V.P. DWG E009-30 & 152



When the Heater Drain Pump breaker closes what happens to the Heater Drain Pump Normal Discharge Valve?

- 1. It opens after a two minute delay.
- 2. It opens immediately.

28

- 3. It opens after a five second delay.
- 4. It does not get a signal from the pump breaker.

