
“Software Development”

Job Cluster

1

This material is based upon work supported by the National Science Foundation under Grant No. 1838535. Any

opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and

do not necessarily reflect the views of the National Science Foundation.

Acknowledgements

The development and publication of these skill standards has been a joint and collaborative effort

between business and industry representatives and the education community. We are grateful to the

industry personnel who participated in the development and validation process. Industry subject matter

experts, technical executives, supervisors and technicians donated their time and effort to assure the

relevancy of the standards 12 to 36 months into the future.

We gratefully acknowledge funding from the National Science Foundation and the leadership by

the team on the IT Skill Standards 2020 and Beyond grant, based at Collin College.

Our leaders are strategically divided into Central, Western, and Eastern teams.

Central

Dr. Ann Beheler, Principal Investigator

Christina Titus, Program Director

Deborah Roberts, Co-Principal Investigator

Helen Sullivan, Senior Staff

West Coast

Terryll Bailey, Co-Principal Investigator

Dr. Suzanne Ames, Co-Principal Investigator

East Coast

Peter Maritato, Co-Principal Investigator

Gordon Snyder, Senior Staff

2

Software Development

The definition for Software Development as developed by approximately 100 Thought Leaders (mostly
Chief Technology Officers and Chief Information Officers) through three meetings and follow-up surveys
to gain consensus is:

Software development and engineering includes the research, design, secure creation, delivery and
quality assurance/testing of computer software and applications including mobile. Additionally, web
development can range from developing a simple single static page of plain text to complex web-
based internet applications (web apps), and social network services. This definition was adapted
from Wikipedia with input from national IT Thought Leaders.

This packet includes…

Job skills as developed by subject matter experts (SMEs) via multiple synchronous meetings (Page 5).

The tasks, knowledge, skills and abilities (KSAs) were developed with a focus 12 to 36 months in the
future for an entry-level employee working in that specific cluster.

More specific definitions can be found within the KSA list.

The average was calculated from the subject matter expert votes.

• A vote of "4" indicated the item must be covered in the curriculum.
• A vote of "3" indicated the item should be covered in the curriculum.
• A vote of "2" indicated that it would be nice for the item to be covered in the curriculum.
• A vote of "1" indicated the item should not be covered in the curriculum.

Employability Skills as developed by SMEs via multiple synchronous meetings (Page 9).

Employability competencies are essential for every IT job and are based on what the work requires.
SMEs were offered three clearly-defined “levels of proficiency” for each employability skill. The
proficiency scale is defined as Level 1 – basic: Level 2- intermediate; and Level 3 - advanced. The levels
are cumulative, so a “Level 3” assumes the employee can perform all characteristics of “Level 1” and
“Level 2.”

For each employability skill, SMEs selected the competency level that best aligned with what would be
expected from an entry-level worker for the job cluster in question.

Key Performance Indicators (KPIs) as developed by SMEs (Page 10).

Key Performance Indicators answer the question, “How do we know when a task is performed well?”

A search was performed to locate validated/verified KPIs for technician level work in IT fields. Sources
included the Texas Skill Standards System, National Skill Standards Board, National Institute of Standards
and Technology and other sources. The identified KPIs were then cross-referenced to the tasks for the
ITSS 2020 job clusters. They were reviewed and revised by a group of the same subject matter experts
who developed the tasks and KSAs for the cluster in a structured, facilitated verification session.

itskillstandards.org

3

file://Instructional/I/ITSS%202020/Final%20Products%20Posted/Data%20Analytics/itskillstandards.org

Student Learning Outcomes (SLOs) as identified by educators attending the KSA meetings (Page
12).

The SLOs are for use in the creation of curriculum to help define what the students will know and
be able to demonstrate. Each of these SLOs can be observed, measured, and demonstrated.

Degree Expectations as identified by educators (Page 16).
A pool of 20 community college and four-year university faculty members from across the country
were asked to categorize each knowledge, skill, ability, and task below. The question posed to them:
would these KSA+Ts be reasonably included in a two-year AAS program, a four-year Bachelor’s
program, both, or neither? These results provide another tool for educators to use in assessing how
to best incorporate each knowledge, skill, ability, and task.

4

Software Development KSAs
AVG

T-1 Identify, document, and effectively communicate security concerns and/or threat vulnerabilities. 2.8

T-2
Analyze information to determine, recommend, and plan development and installation of a new system or
modification of an existing system.

2.7

T-3 Develop code to read and write files. 3.7
T-4 Create webpages using data from a database. 3.3
T-5 Create applications such as Servlets that send HTML pages to Internet clients. 3.1
T-6 Write and debug effective code using various scripting languages. 3.5
T-7 Assist with development on multiple platforms (e.g., Linux, Windows, AppleOS, etc.). 3.0
T-8 Design, develop, and validate stable, robust, secure, and efficient code following industry best practices. 3.5
T-9 Develop secure code and error handling. 3.6

T-10
Develop cross platform applications targeted for an OS or platform other than the development
environment.

2.5

T-11 Develop applications that run on multiple browsers. 3.5
T-12 Design, create, manage, and evaluate Apps. 3.2
T-13 Manipulate the objects contained in the Document Object Model (DOM). 2.8
T-14 Demonstrate familiarity with at least one current IDE and other developer productivity tools. 3.6
T-15 Identify, evaluate, and apply efficient algorithms and data structures (e.g., sorting, multithreading). 3.2

T-16 Apply SDLC (software development lifecycle) industry practices (e.g., Agile, waterfall, scrum, etc.). 3.2

T-17
Assist in designing countermeasures and mitigations against potential exploitations of programming
language weaknesses and vulnerabilities in system and elements.

2.6

T-18
Apply secure code documentation in accordance with corporate policy to ensure safety of how code is
implemented or processed for user access and security access to code that govern software driven
apparatus.

3.4

T-19
Compile and write documentation of existing software program development and subsequent revisions,
inserting comments in the coded instructions so others can understand the program.

3.5

T-20
Identify and leverage the enterprise-wide version control system while designing and developing secure
applications.

3.4

T-21
Collaborate with a wide range of technical professionals, in person and virtually, using tools and strategies
that support cooperative software development practices.

3.7

T-22
Conduct trial runs of programs and software applications to ensure that the desired information is produced
and instructions and security levels are correct.

3.3

T-23 Test and evaluate any software code/processes you developed (unit testing). 3.8
T-24 Utilize software testing tools to implement various test strategies. 3.3
T-25 Assist in developing software system testing and validation procedures, programming, and documentation. 3.2

T-26
Correct errors by making appropriate changes and rechecking the program to ensure that desired results
are produced.

3.7

T-27
Apply coding and testing standards, security testing tools including "'fuzzing" static-analysis code scanning
tools, and conduct code reviews.

3.3

T-28 Determine system performance against standards and follow appropriate action plan when issues arise. 2.8

T-29
Implement and properly document software patches and report any software security issues that would
leave software vulnerable.

3.4

T-30
Modify existing software to correct errors, adapt it to new hardware, or upgrade interfaces and improve
performance.

3.3

T-31 Contribute presentation materials and communicated effectively in a team meeting. 3.4

Tasks
Analysis and Design

Programming

Testing

Implementation

5

T-32
Communicate with customers or other departments on project status, proposals, or technical issues, such as
software system design or maintenance, including both oral and written communication. 2.9

T-33
Contribute to team, follow directives from designers and engineers related to software design and
implementation.

3.6

K-1 Knowledge of software development models (e.g., Waterfall Model, Spiral Model). 3.3

K-2
Knowledge of system design tools, methods, and techniques, including automated systems analysis and
design tools.

3.3

K-3 Knowledge of effective software debugging principles. 3.6
K-4 Knowledge of computer programming languages and principles in general. 3.7
K-5 Knowledge of web services (e.g., service-oriented architecture, REST, and web service description language). 3.3
K-6 Knowledge of visual representations of a program or system (e.g., UML, etc.). 2.5

K-7
Knowledge of how programs communicate across networks using asynchronous and synchronous
techniques (when to use and why).

2.9

K-8
Knowledge of Software Integration Management Systems – how industry documents final product builds to
show all of the elements that have changes and checks those that have not changed. 2.7

K-9 Knowledge of event handling in a GUI. 3.3
K-10 Knowledge of Regression Testing Development – how to test software using software. 3.3
K-11 Knowledge of the appropriate use of cookies. 3.2

K-12
Knowledge of how applets differ from applications in terms of program form, operating context, and how
they are started.

3.1

K-13
Knowledge of two or more operating systems that are current industry standards (e.g., Linux, Windows
Apple OS).

3.4

K-14 Knowledge of error handling constructs. 3.5
K-15 Knowledge of the differences between client-side scripting and server-side scripting. 3.5

K-16
Knowledge of common program architectures (e.g., standalone, three-tier, web-based, cloud-based,
serverless, microservice).

3.3

K-17 Knowledge of the local development cycle (e.g., build, deploy, test, debug). 3.7
K-18 Knowledge of server software patterns, messaging patterns both async and synch. 3.3
K-19 Knowledge of database integration/management software. 3.1
K-20 Knowledge of AI and ML methods and algorithms. 2.7
K-21 Knowledge of software collaboration tools (e.g., version control, bug tracking, continuous integration). 3.6

K-22
Knowledge of the limits vs actual process of continuous integration and production deployment practices of
devsecops/devnetsecops.

3.0

K-23 Knowledge of cybersecurity and privacy principles and methods that apply to software development. 3.3

K-24
Knowledge of system and application security threats and vulnerabilities (e.g., buffer overflow, mobile code,
cross-site scripting, Procedural Language/Structured Query Language [PL/SQL] and injections, race
conditions, covert channel, replay, return-oriented attacks, malicious code).

3.3

K-25 Knowledge of code security (e.g., hashing, encryption, cryptography, threat modeling). 3.1
K-26 Knowledge of Privacy Impact Assessments in terms of privacy and identity management. 2.7
K-27 Knowledge of cyber threats and vulnerabilities. 3.3

K-28
Knowledge of software related information technology (IT) security principles and methods (e.g.,
modularization, layering, abstraction, data hiding, simplicity/minimization).

3.2

K-29 Awareness of standards such as PCI, PHI, and GDPR. 2.8

K-30
Knowledge of basic security practices including threats and vulnerabilities that may arise from interactions
with other systems, external and legacy code.

3.5

K-31
Knowledge of computer network fundamentals (e.g., TCP/IP, HTTPS, ports, firewall, LAN/WAN, etc.) and
network security methodologies.

3.3

Knowledge
Knowledge focuses on the understanding of concepts. It is theoretical. An individual may have an understanding of a
topic or tool or some textbook knowledge of it but have no experience applying it. For example, someone might have

read hundreds of articles on health and nutrition, many of them in scientific journals, but that doesn't make that person
qualified to dispense advice on nutrition.

6

K-32
Knowledge of implementation and utilization of cloud services including deployment (e.g., AWS, Microsoft
Azure).

3.1

K-33 Awareness of cloud computing concepts (e.g., IoT, edge computing). 2.5

K-34
Knowledge of software development and implementation for communicating and gathering data from IoT
devices.

2.6

K-35 Knowledge of the difference between AI and ML. 2.9
K-36 Awareness of current and specialized AI and ML tools and their application to business problems. 2.7
K-37 Conceptual knowledge of PKI. 2.9
K-38 Knowledge of DevSecOps. 2.9
K-39 Knowledge of structured and unstructured data sources. 3.3
K-40 Knowledge of open source software and risks involved. 3.4
K-41 Knowledge of ethics and its application to software development. 3.4
K-42 Knowledge of best practices for Design/UI/UX/accessibility as applied to software development. 3.2
K-43 Knowledge of lifecycle development/steady state/end of life. 3.1
K-44 Knowledge of mobile application development. 2.8
K-45 Knowledge of how to protect data privacy through code. 3.1

K-46
Knowledge of process flow and how the upgrade/implementation of software is accomplished through
definitive understanding of team collaboration in DevOps, End of Life Cycle, and including importance of
foundational security.

2.7

K-47
Knowledge of performing integrated quality assurance testing for security functionality and resiliency
attack.

2.6

K-48
Knowledge of how to identify security implications in the software acceptance phase including completion
criteria, risk acceptance and documentation, common criteria, and methods of independent testing and
report concerns to IT/software team.

2.6

K-49
Knowledge of applications with public keying by leveraging existing public key infrastructure (PKI) libraries
and incorporating certificate management and encryption functionalities when appropriate. 2.5

K-50
Knowledge of how to identify and leverage the enterprise-wide security services while designing and
developing secure applications (e.g., Enterprise PKI, Federated Identity server) when appropriate. 2.5

K-51
Knowledge of how to identify and analyze user needs and use needs to establish a plan in the selection,
creation, evaluation, implementation and administration of information technology systems. 2.4

K-52
Knowledge of security requirements into application design elements including documenting the elements
of the software attack surfaces, conducting threat modeling, and defining any specific security criteria. 2.4

K-53 Knowledge of architecture patterns and when to use them to build applications. 2.8
K-54 Knowledge of algorithms and data structures (e.g., big-O, linked lists, hash maps, sorting, etc.). 2.9
K-55 Knowledge of Binary search tree and how binary search works. 2.8
K-56 Knowledge of Hash maps. 2.8

S-1
Skill in using built-in functions as well as skill in creating custom functions, subroutines, and procedures
within software using scripting languages.

3.3

S-2 Skill in integrating standard object model components with server pages in support of the User Experience. 2.9
S-3 Skill in conducting software debugging. 3.6

S-4
Skill in creating programs that validate and process multiple inputs including command line arguments,
environmental variables, and input streams.

3.5

S-5 Skill in writing code in current programming languages and frameworks. 3.7

Skills
The capabilities or proficiencies developed through training or hands-on experience. Skills are the practical application
of theoretical knowledge. Someone can take a course on investing in financial futures, and therefore has knowledge of

it. But getting experience in trading these instruments adds skills.

7

S-6
Skill in developing applications that can log and handle errors, exceptions, and application faults and
logging.

3.3

S-7 Skill in applying root cause analysis (RCA) techniques to solving software/customer issues. 3.2
S-8 Skill in the live production environment (e.g., monitoring, logging, alerting, remote debugging). 3.2

S-9
Skill in using electronic mail software (e.g., Google Gmail; IBM Notes Hot technology; Microsoft Exchange
Server Hot technology; Microsoft Outlook Hot technology).

3.4

S-10
Skill in using graphical user interface development software (e.g., Graphical user interface GUI builder
software; Graphical user interface GUI design software; Salesforce Visualforce Hot technology). 3.1

S-11
Skill in using object or component-oriented development software (e.g., C++ Hot technology; Document
Object Model DOM Scripting; Python Hot technology; Simple API for XML SAX).

3.2

S-12 Skill in creating classes that use inheritance aspects of the object-oriented paradigm. 3.2
S-13 Skill in using, incorporating and utilizing cookies. 2.8
S-14 Skill in implementing programs that use local or remote databases with standard protocols. 3.2
S-15 Skill in using a scripting language on the server side and the client side of a distributed program. 3.2
S-16 Skill in evaluating and reporting software needs, constraints, analysis for application-specific concerns. 2.9
S-17 Skill in implementing levels of security in distributed software applications and applets. 2.8

S-18
Skill in deploying secure software according to secure software deployment methodologies, tools, and
practices (e.g., PCI,GDPR, HIPPA, CCPA).

3.1

S-19 Skill in mobile application development. 2.7
S-20 Skills such as time management, risk management. 3.3
S-21 Skill in incorporating user experience feedback into software. 3.1
S-22 Skill in integrating third party open source resources into software including minimizing risk. 3.1
S-23 Skill in learning new and/or industry standard tools involved in the development of software. 3.6

A-1
Ability to both mentor and be mentored; provide critical feedback as well as accept critical feedback two-
way.

3.5

A-2 Ability to comprehend and execute both written and oral instructions by asking clarifying questions. 3.8

A-3
Ability to effectively communicate technical concepts and constraints in written and oral form to technical
team members, stakeholders.

3.6

A-4
Ability to work effectively in multi-disciplinary teams to apply information technology in support of
organizational goals.

3.6

A-5 Ability to produce technical content for tech writers. 2.9

A-6
Ability to manage your own software development project activities and deliverables in a timely and
efficient manner.

3.5

A-7
Ability to work on team projects and demonstrate critical thinking, teamwork, oral communications, inter-
cultural appreciation, and technical and information literacy skills.

3.9

A-8 Ability to research and be able to find other sources to answer the problem. 3.7
A-9 Ability to engage with users and understand their user experience. 3.3

A-10 Ability to draw on prior knowledge and experience in a new situation. 3.7

Abilities
Abilities have historically been used to describe the innate traits or talents that a person brings to a task or situation.

Many people can learn to negotiate competently by acquiring knowledge about it and practicing the skills it requires. A
few are brilliant negotiators because they have the innate ability to persuade. In reality, abilities may be included under

skills or may be separated out.

8

Software Development Employability Skills

Workplace
Professionalism
& Work Ethics

Level 1 - Employee learns expectations of workplace environment (professional behavior and ethics) and
adheres to practices with some guidance.
Level 2 - Employee exhibits sound professionalism, judgment, and integrity and accepts responsibility for own
behavior. Employee exhibits these qualities without guidance but occasionally refers to policies as needed.

Written
Communication

Level 1 - Employee understands written instructions and executes tasks with guidance and feedback from
supervisor. Employee clearly communicates concepts in writing.
Level 2 - Employee comprehends and executes written instructions with minimal guidance. Employee composes
well-organized written documents.

Oral
Communication

Level 1 - Employee understands oral instructions and executes tasks with guidance and feedback from
supervisor. Employee communicates concepts orally while clarifying for meaning. Employee develops listening
skills.
Level 2 - Employee comprehends and executes oral instructions with minimal guidance and exhibits good
listening skills. Employee clarifies for meaning without needing prompting from supervisor.

Teamwork

Level 1 - With guidance and feedback from supervisor, employee obeys team rules and understands team
member roles. Employee actively participates in team activities, volunteers for special tasks, and establishes
rapport with co-workers.
Level 2 - Employee demonstrates commitment, enthusiasm and supports team members. Employee follows up
on assigned tasks and leads by example.

Problem
Solving &

Critical
Thinking

Level 1 - Employee identifies the problem and relevant facts and principles with guidance and feedback from
supervisor. Employee summarizes existing ideas and demonstrates creative thinking process while problem
solving.
Level 2 - With minimal supervision, employee analyzes underlying causes, considers risks and implications, and
uses logic to draw conclusions. Employee applies rules and principles to processes and recommends solutions.

Organization
and Planning

Level 1 - Employee prepares schedule for self, monitors and adjusts task sequence, and analyzes work
assignments with guidance from supervisor.
Level 2 - Employee manages timelines and recommends timeline adjustments. Employee escalates timeline-
impacting issues as appropriate.

Adaptability
and Flexibility

Level 1 - With guidance and feedback from supervisor, employee is able to adjust ways of doing work based on
changing dynamics. Working under pressure is difficult, but employee makes it through the project with
guidance and oversight.
Level 2 - Employee makes inquiries of co-workers regarding possible changes needed in ways of doing work and
adapts accordingly. Observes co-workers increasing work productivity under pressure and follows their lead.

Initiative
Level 1 - Employee finishes a step in a project and waits for direction before going on to the next step.
Level 2 - Employee finishes multiple steps in a project and appropriately begins working on the next step
without being asked.

Accuracy
Level 1 - Employee makes mistakes routinely but is committed to learning to adjust work habits to prevent them
in the future.
Level 2 - Employee occasionally makes mistakes but quickly makes adjustments to work habits to avoid making
the same mistake twice.

Cultural
Competence

Level 1 - Employee is inexperienced with working with diverse teams. With support and guidance and getting to
know team members, employee develops working relationships.
Level 2 - Employee is committed to working with diverse teams but struggles when differences arise. Employee
identifies those challenges and works with colleagues to find ways to work effectively.

Self and Career
Development

Level 1 - Employee requires feedback and direction from supervisor regarding improvement needed in
professional and technical skills. Employee follows through with skills development with monitoring by
supervisor.
Level 2 - Employee builds upon self-assessment experience and can develop a professional and technical skills
improvement plan in conjunction with supervisor. Employee completes development plan without prompting
from supervisor.

9

Tasks Key Performance Indicators

T-1
Identify, document, and effectively communicate security concerns
and/or threat vulnerabilities.

T-2
Analyze information to determine, recommend, and plan
development and installation of a new system or modification of an
existing system.

T-3 Develop code to read and write files.
T-4 Create webpages using data from a database.

T-5
Create applications such as Servlets that send HTML pages to
Internet clients.

T-6 Write and debug effective code using various scripting languages.

T-7
Assist with development on multiple platforms (e.g., Linux, Windows,
AppleOS, etc.).

T-8
Design, develop and validate stable, robust, secure, and efficient
code following industry best practices.

T-9 Develop secure code and error handling.

T-10
Develop cross platform applications targeted for an OS or platform
other than the development environment.

T-11 Develop applications that run on multiple browsers.
T-12 Design, create, manage, and evaluate Apps.

T-13
Manipulate the objects contained in the Document Object Model
(DOM).

T-14
Demonstrate familiarity with at least one current IDE and other
developer productivity tools.

T-15
Identify, evaluate, and apply efficient algorithms and data structures
(e.g., sorting, multithreading).

T-16
Apply SDLC (software development lifecycle) industry practices (e.g.,
Agile, waterfall, scrum, etc.).

T-17
Assist in designing countermeasures and mitigations against
potential exploitations of programming language weaknesses and
vulnerabilities in system and elements.

T-18

Apply secure code documentation in accordance with corporate
policy to ensure safety of how code is implemented or processed for
user access and security access to code that govern software driven
apparatus.

T-19
Compile and write documentation of existing software program
development and subsequent revisions, inserting comments in the
coded instructions so others can understand the program.

T-20
Identify and leverage the enterprise-wide version control system
while designing and developing secure applications.

T-21
Collaborate with a wide range of technical professionals, in person
and virtually, using tools and strategies that support cooperative
software development practices.

Software Development Key Performance Indicators
For the entry-level employee, all tasks are typically done under supervision for much of the first year and then with some
independence with verification after the employee has more experience. All tasks are done according to company guidelines.

Analysis & Design

Requirements are properly understood, interpreted, and evaluated, and
conflicting requirements are identified and resolved.
Time, technology, and resource constraints are defined, alternatives are
presented, and risk analysis and contingency plans are implemented.
Security requirements are consistent with company standards and all
applicable laws and regulations.
Analysis of new and existing software security concerns and/or threat
vulnerabilities are provided to IT/software team to guide
development/modification of a security application.

Programming

Code is developed and documented using efficient software design
processes.
Links between web applications and associated databases are properly
established.
Appropriate debugging tools are used in an efficient manner.
High-quality software of multiple types is produced that meets or exceeds
customer expectations, follows industry best practices, and is completed
within engineering time and cost estimates.
Application, programming, or communication errors and security
vulnerabilities are correctly anticipated, detected, and resolved.
Authoring, modifying, compiling, deploying, and debugging of software
are completed in a thorough and efficient manner.
Programs are written in the most efficient way, and data is organized in
such a way that it can be updated, deleted, retrieved efficiently, and
securely protected.
Software is deployed in accordance with secure software deployment
methodologies, tools, documentation, and other practices.
Implementing solutions known threats known to produce a reduction in
threats and vulnerabilities.
Documentation is clear and complete, including consistent use of
enterprise-wide version control.
The appropriate Integrated Development Environment is used in code
creation.
SDLC industry practices, as specified by the company, are consistently
followed.
Cooperative software development practices are utilized.

10

T-22
Conduct trial runs of programs and software applications to ensure
that the desired information is produced and instructions and
security levels are correct.

T-23
Test and evaluate any software code/processes you developed (unit
testing).

T-24 Utilize software testing tools to implement various test strategies.

T-25
Assist in developing software system testing and validation
procedures, programming, and documentation.

T-26
Correct errors by making appropriate changes and rechecking the
program to ensure that desired results are produced.

T-27
Apply coding and testing standards, security testing tools including
"'fuzzing" static-analysis code scanning tools, and conduct code
reviews.

T-28
Determine system performance against standards and follow
appropriate action plan when issues arise.

T-29 Implement and properly document software patches and report any
software security issues that would leave software vulnerable.

T-30
Modify existing software to correct errors, adapt it to new hardware,
or upgrade interfaces and improve performance.

T-31
Contribute presentation materials and communicated effectively in a
team meeting.

T-32
Communicate with customers or other departments on project
status, proposals, or technical issues, such as software system design
or maintenance, including both oral and written communication.

T-33
Contribute to team, follow directives from designers and engineers
related to software design and implementation.

Testing

Unit testing is accomplished using standard testing procedures, and
testing on each unit is repeated until the unit is free of errors.
Appropriate software testing tools are used.
Testing identifies errors, gaps, or missing requirements and results in
reliability, security, and high performance.
Errors identified during testing are corrected and code is retested until no
errors are identified.
A systematic testing program is implemented that is relevant to
application and test requirements and is in compliance with legal
requirements, policies, procedures, and customer requirements.
Code reviews are performed in a regular and timely manner.

Implementation

Software upgrades and patches are applied with minimal service
disruptions to clients/users in a timely manner.
Software performance meets design specs and client/user requirements.
Software is modified on an ongoing basis to adapt to hardware and
software changes.
Recommendations based on customer input and analysis of system data
are presented to appropriate personnel.
Client/users are informed regarding requirements and technology.
Effective presentations are used to communicate both internally and
externally.
Team members collaborate and follow the design and implementation
guidelines provided.

11

Student Learning Outcomes

K-22
Knowledge of the limits vs actual process of continuous integration
and production deployment practices of devsecops/devnetsecops.

Explain the process of integration, production, and deployment of
software development life cycle.

K-36
Awareness of current and specialized AI and ML tools and their
application to business problems.

Stay informed regarding current and specialized AI and ML tools to
solve business problems.

K-16
Knowledge of common program architectures (e.g., standalone,
three-tier, web-based, cloud-based, serverless, microservice).

Describe common application architectures.

K-32
Knowledge of implementation and utilization of cloud services,
including deployment (e.g., AWS, Microsoft Azure).

Identify the different cloud services and how they are different in their
implementation process.

K-5
Knowledge of web services (e.g., service-oriented architecture,
Simple Object Access Protocol, and web service description
language).

Discuss common services, practices, and protocols used in the
development of web services.

K-11 Knowledge of the appropriate use of cookies. Explain the appropriate usage of cookies.

K-23
Knowledge of cybersecurity and privacy principles and methods that
apply to software development.

Explain information security principles and fundamental methods that
apply to software development.

K-27 Knowledge of cyber threats and vulnerabilities.

K-30
Knowledge of basic security practices including threats and
vulnerabilities that may arise from interactions with other systems,

K-29 Awareness of standards such as PCI, PHI, and GDPR.
Be aware of laws, regulations, and standards related to cybersecurity
and privacy globally.

K-25
Knowledge of code security (e.g., hashing, encryption, cryptography,
threat modeling).

K-37 Conceptual knowledge of PKI.

K-34
Knowledge of software development and implementation for
communicating and gathering data from IoT devices.

Explain how to develop and implement software programs for the
purpose of communicating and gathering data from IoT devices.

K-39 Knowledge of structured and unstructured data sources.
Describe how to access data from both structured and unstructured
sources.

K-19 Knowledge of database integration/management software.
Discuss database integration tools and techniques for software
management.

K-3 Knowledge of effective software debugging principles.
Demonstrate tools and techniques used to debug software
applications.

K-18
Knowledge of server software patterns, messaging patterns both
async and synch.

Explain async and synch in server software patterns and messaging
patterns.

K-42
Knowledge of best practices for Design/UI/UX/accessibility as
applied to software development.

Define UI, UX, and accessibility and demonstrate best practices for
incorporating them in a software system design.

K-15
Knowledge of the differences between client-side scripting and
server-side scripting.

Explain the differences between client-side and server-side scripting in
software development.

K-46

Knowledge of process flow and how the upgrade/implementation of
software is accomplished through definitive understanding of team
collaboration in DevOps, End of Life Cycle, and including importance
of foundational security.

Discuss DevSecOps as it relates to DevOps and the secure software
development life cycle.

K-6
Knowledge of visual representations of a program or system (e.g.,
UML, etc.).

Explain the use of visual tools such as UML to represent software
design.

K-8
Knowledge of Software Integration Management Systems – how
industry documents final product builds to show all of the elements
that have changes and checks those that have not changed.

Document software changes in the Software Integration Management
Systems.

K-41 Knowledge of ethics and its application to software development.
Explain the importance of ethics and how it is applied to software
development.

K-7
Knowledge of how programs communicate across the Internet using
conventions such as Remote Method Invocation.

Explain how programs communicate across the Internet using
conventions such as Remote Method Invocation.

K-14 Knowledge of error handling constructs. Discuss how constructs are used to handle errors in software.

K-4
Knowledge of computer programming languages and principles in
general.

List commonly used programming languages and general concepts that
are common to these languages.

Describe secure coding algorithms such as hashing, encryption,
cryptography in general, and PKI.

Software Development Student Learning Outcomes
Knowledge

Discuss the potential threats and vulnerabilities that may arise from
basic security practices when interacting with other systems, and
external and legacy code.

12

K-12
Knowledge of how applets differ from applications in terms of
program form, operating context, and how they are started.

Explain the differences between applets and applications.

K-44 Knowledge of mobile application development.
Describe tools, techniques, and frameworks used for mobile
application development.

K-31
Knowledge of computer network fundamentals (e.g., TCP/IP, HTTPS,
ports, firewall, LAN/WAN etc.) and network security methodologies.

Explain computer network fundamentals and security methodologies
such as TCP/IP, HTTPS, ports, firewall, and LAN/WAN.

K-13
Knowledge of two or more operating systems that are current
industry standards (e.g., Linux, Windows Apple OS).

Discuss common operating systems used for software applications.

K-1
Knowledge of software development models (e.g., Waterfall Model,
Spiral Model).

Explain the different types of software development models.

K-2
Knowledge of system design tools, methods, and techniques,
including automated systems analysis and design tools.

Describe tools, methods, and techniques used for software analysis and
design.

K-17
Knowledge of the local development cycle (e.g., build, deploy, test,
debug).

K-43 Knowledge of lifecycle development/steady state/end of life.

K-10
Knowledge of Regression Testing Development – how to test
software using software.

Explain how to test software with Regression Testing Development.

K-9 Knowledge of event handling in a GUI.
Describe how event-handling is implemented in a GUI (graphical user
interface).

K-24

Knowledge of system and application security threats and
vulnerabilities (e.g. buffer overflow, mobile code, cross-site scripting,
Procedural Language/Structured Query Language [PL/SQL] and
injections, race conditions, covert channel, replay, return-oriented
attacks, malicious code).

Discuss software application and system security threats and
vulnerabilities.

K-28
Knowledge of software related information technology (IT) security
principles and methods (e.g., modularization, layering, abstraction,
data hiding, simplicity/minimization).

Classify the application of secure coding principles and methods.

K-38 Knowledge of DevSecOps. Describe DevSecOps principles and practices.

K-45 Knowledge of how to protect data privacy through code. Explain how to protect data privacy by secure coding techniques.

K-26
Knowledge of Privacy Impact Assessments in terms of privacy and
identity management.

Describe how Privacy Impact Assessment (PIA) tools are used to
identify and mitigate privacy risks.

K-21
Knowledge of software collaboration tools (e.g., version control, bug
tracking, continuous integration).

Describe how software tools are used to collaborate and manage the
phases of the software development lifecycle.

K-40 Knowledge of open source software and risks involved.
Compare and contrast common open-source frameworks and tools
used for software development, including describing the risks involved.

K-35 Knowledge of the difference between AI and ML.
K-20 Knowledge of AI and ML methods and algorithms.

K-33 Awareness of cloud computing concepts (e.g., IoT, edge computing).
Describe different cloud computing concepts such as IoT and edge
computing.

K-47
Knowledge of performing integrated quality assurance testing for
security functionality and resiliency attack.

Demonstrate how to perform an integrated quality assurance test for
security functionality and resiliency attacks.

K-48

Knowledge of how to identify security implications in the software
acceptance phase including completion criteria, risk acceptance and
documentation, common criteria, and methods of independent
testing and report concerns to IT/software team.

Explain how to identify security implications in the software
acceptance phase.

K-49
Knowledge of applications with public keying by leveraging existing
public key infrastructure (PKI) libraries and incorporating certificate
management and encryption functionalities when appropriate.

Demonstrate how to use public keying by leveraging existing public key
infrastructure (PKI) libraries while incorporating certificate
management and encryption functionalities.

K-50
Knowledge of how to identify and leverage the enterprise-wide
security services while designing and developing secure applications
(e.g., Enterprise PKI, Federated Identity server) when appropriate.

Explain how to identify and leverage enterprise-wide security services
while designing and developing secure applications.

List and discuss the phases of the software development lifecycle.

Differentiate between Artificial Intelligence (AI) and Machine Learning
(ML) methods and algorithms.

13

K-51

Knowledge of how to identify and analyze user needs and use needs
to establish a plan in the selection, creation, evaluation,
implementation and administration of information technology
systems.

Discuss how to identify and analyze user needs when creating
information technology systems.

K-52

Knowledge of security requirements into application design
elements including documenting the elements of the software attack
surfaces, conducting threat modeling, and defining any specific
security criteria.

Discuss the security factors to consider when designing software
application, including attack surface analysis, threat modeling, and
specific security criteria.

K-53
Knowledge of architecture patterns and when to use them to build
applications.

Explain contemporary software architecture patterns and how to use
them in creating applications.

K-54
Knowledge of algorithms and data structures (e.g., big-O, linked lists,
hash maps, sorting, etc.).

K-55 Knowledge of Binary search tree and how binary search works.

K-56 Knowledge of Hash maps.
Student Learning Outcomes

S-1
Skill in using built-in functions as well as skill in creating custom
functions, subroutines, and procedures within software using
scripting languages.

S-15
Skill in using a scripting language on the server side and the client
side of a distributed program.

S-2
Skill in integrating standard object model components with server
pages in support of the User Experience.

Develop a server page containing integrated object model components.

S-3 Skill in conducting software debugging.
Evaluate a software program's effectiveness by using debugging tools
and techniques.

S-4
Skill in creating programs that validate and process multiple inputs
including command line arguments, environmental variables, and
input streams.

Design and implement applications which acquire and validate input
from various sources, including command line arguments, files,
environment variables, and input streams.

S-5
Skill in writing code in current programming languages and
frameworks.

Develop applications which use a standard current programming
language.

S-6
Skill in developing applications that can log and handle errors,
exceptions, and application faults and logging.

Create applications that can log and handle errors, and exceptions, and
identify application faults.

S-7
Skill in applying root cause analysis (RCA) techniques to solving
software/customer issues.

Apply root cause analysis techniques to identify and diagnose software
defects.

S-8
Skill in the live production environment (e.g., monitoring, logging,
alerting, remote debugging).

Create a live production environment that will support monitoring,
logging, alert processing, and debugging remotely.

S-9
Skill in using electronic mail software (e.g., Google Gmail; IBM Notes
Hot technology; Microsoft Exchange Server Hot technology;
Microsoft Outlook Hot technology).

Demonstrate the use of electronic mail systems.

S-10

Skill in using graphical user interface development software (e.g.,
Graphical user interface GUI builder software; Graphical user
interface GUI design software; Salesforce Visualforce Hot
technology).

Create software using a graphical user interface.

S-11
Skill in using object or component oriented development software
(e.g., C++ Hot technology; Document Object Model DOM Scripting;
Python Hot technology; Simple API for XML SAX).

Use a component-driven development software tool to build software
components.

S-12
Skill in creating classes that use inheritance aspects of the object-
oriented paradigm.

Create objects that inherit properties and methods from a class.

S-13 Skill in using, incorporating and utilizing cookies.
Create web applications that use common services, practices,
protocols, and cookies.

S-14
Skill in implementing programs that use local or remote databases
with standard protocols.

Design and develop programs that use databases with standard
protocols.

S-16
Skill in evaluating and reporting software needs, constraints, analysis
for application-specific concerns.

Evaluate domain-specific needs, identify requirements, and define
scope for applications.

S-17
Skill in implementing levels of security in distributed software
applications and applets.

S-18
Skill in deploying secure software according to secure software
deployment methodologies, tools, and practices (e.g., PCI,GDPR,
HIPPA, CCPA).

S-19 Skill in mobile application development. Design and develop mobile applications.
S-20 Skills such as time management, risk management. Apply time management and risk management skills.

Skills

Design and create a modularized, distributed application using a
scripting language.

Deploy secure software according to secure software deployment
methodologies, tools, and practices.

Discuss the differences between algorithms and data structures such as
big-O, linked lists, hash maps, trees, sorting, and searching.

14

S-21 Skill in incorporating user experience feedback into software. Incorporate user experience feedback into software applications.

S-22 Skill in integrating third party open source resources into software. Integrate third-party open source components into applications.

S-23
Skill in learning new and/or industry standard tools involved in the
development of software.

Evaluate and learn new and standard software tools as they become
available.

Student Learning Outcomes

A-1
Ability to both mentor and be mentored; provide critical feedback as
well as accept critical feedback two-way.

Distinguish the responsibilities of being a mentor and a mentee and
perform in both roles.

A-2
Ability to comprehend and execute both written and oral
instructions by asking clarifying questions.

A-3
Ability to effectively communicate technical concepts and
constraints in written and oral form to technical team members,
stakeholders.

A-4
Ability to work effectively in multi-disciplinary teams to apply
information technology in support of organizational goals.

A-9 Ability to engage with users and understand their user experience.

A-5 Ability to produce technical content for tech writers. Organize technical content for technical writers to finalize.

A-6
Ability to manage your own software development project activities
and deliverables in a timely and efficient manner.

Organize and schedule software projects to meet one's own
deliverables timeline.

A-7
Ability to work on team projects and demonstrate critical thinking,
teamwork, oral communications, inter-cultural appreciation, and
technical and information literacy skills.

Demonstrate effective team collaboration and communications skills
for technical and information proficiency.

A-8
Ability to research and be able to find other sources to answer the
problem.

Perform research to solve a problem.

A-10
Ability to draw on prior knowledge and experience in a new
situation.

Apply prior knowledge and experience in new situations.

Demonstrate the ability to work effectively in multi-disciplinary teams
to meet and support organizational goals.

Abilities

Effectively execute written and oral instructions after asking clarifying
questions.

15

2 Year
AAS

Both 2 yr
AAS and 4

yr
Academic

Degree

4 Year
Academic

Degree
Number of
responses

T-1 Identify, document and effectively communicate security concerns and/or
threat vulnerabilities.

11% 73% 16% 19

T-2
Analyze information to determine, recommend, and plan development and
installation of a new system or modification of an existing system. 25% 45% 30% 20

T-3 Develop code to read and write files. 15% 70% 15% 20
T-4 Create webpages using data from a database. 15% 70% 15% 20
T-5 Create applications such as Servlets that send HTML pages to Internet clients. 25% 35% 40% 20
T-6 Write and debug effective code using various scripting languages. 15% 65% 20% 20

T-7 Assist with development on multiple platforms (e.g. Linux, Windows, AppleOS,
etc.).

15% 50% 35% 20

T-8 Design, develop and validate stable, robust, secure, and efficient code following
industry best practices.

10% 70% 20% 20

T-9 Develop secure code and error handling. 15% 65% 20% 20

T-10 Develop cross platform applications targeted for an OS or platform other than
the development environment.

5% 32% 63% 19

T-11 Develop applications that run on multiple browsers. 11% 72% 17% 18
T-12 Design, create, manage, and evaluate Apps. 6% 67% 28% 18

T-13 Manipulate the objects contained in the Document Object Model (DOM). 17% 50% 33% 18

T-14 Demonstrate familiarity with at least one current IDE and other developer
productivity tools.

25% 65% 10% 20

T-15 Identify, evaluate, and apply efficient algorithms and data structures (e.g.
sorting, multithreading).

11% 37% 53% 19

T-16 Apply SDLC (software development lifecycle) industry practices (e.g. Agile,
waterfall, scrum, etc.).

5% 55% 40% 20

T-17
Assist in designing countermeasures and mitigations against potential
exploitations of programming language weaknesses and vulnerabilities in
system and elements.

5% 21% 74% 19

T-18

Apply secure code documentation in accordance with corporate policy to
ensure safety of how code is implemented or processed for user access and
security access to code that govern software driven apparatus.

16% 37% 47% 19

T-19
Compile and write documentation of existing software program development
and subsequent revisions, inserting comments in the coded instructions so
others can understand the program.

6% 72% 22% 18

T-20 Identify and leverage the enterprise-wide version control system while
designing and developing secure applications.

11% 42% 47% 19

T-21
Collaborate with a wide range of technical professionals, in person and virtually,
using tools and strategies that support cooperative software development
practices.

16% 47% 37% 19

T-22
Conduct trial runs of programs and software applications to ensure that the
desired information is produced and instructions and security levels are correct. 11% 68% 21% 19

T-23 Test and evaluate any software code/processes you developed - unit testing. 16% 61% 21% 19

T-24 Utilize software testing tools to implement various test strategies. 17% 56% 28% 18

A pool of 20 community college and four-year university faculty members from across the country were asked to categorize each
knowledge, skill, ability, and task below. The question posed to them: would these KSA+Ts be reasonably included in a two-year AAS
program, a four-year Bachelor’s program, both, or neither? These results provide another tool for educators to use in assessing how to best
incorporate each knowledge, skill, ability, and task.

Software Development Degree Expectations

% Best Estimate

Tasks

16

T-25 Assist in developing software system testing and validation procedures,
programming, and documentation.

26% 68% 5% 19

T-26 Correct errors by making appropriate changes and rechecking the program to
ensure that desired results are produced.

21% 74% 5% 19

T-27
Apply coding and testing standards, security testing tools including "'fuzzing"
static-analysis code scanning tools, and conduct code reviews. 0% 35% 65% 20

T-28 Determine system performance against standards and follow appropriate action
plan when issues arise.

10% 40% 50% 20

T-29 Implement and properly document software patches and report any software
security issues that would leave software vulnerable.

11% 42% 47% 19

T-30 Modify existing software to correct errors, adapt it to new hardware, or
upgrade interfaces and improve performance.

11% 42% 47% 19

T-31 Contribute presentation materials and communicated effectively in a team
meeting.

5% 80% 15% 20

T-32
Communicate with customers or other departments on project status,
proposals, or technical issues, such as software system design or maintenance,
including both oral and written communication.

11% 68% 21% 19

T-33 Contribute to team, follow directives from designers and engineers related to
software design and implementation.

20% 55% 25% 20

K-1 Knowledge of software development models (e.g. Waterfall Model, Spiral
Model).

11% 42% 47% 20

K-2 Knowledge of system design tools, methods, and techniques, including
automated systems analysis and design tools.

11% 63% 26% 19

K-3 Knowledge of effective software debugging principles. 15% 70% 15% 20

K-4 Knowledge of computer programming languages and principles in general. 25% 60% 15% 20

K-5 Knowledge of web services (e.g. service-oriented architecture, REST, and web
service description language).

16% 63% 21% 19

K-6 Knowledge of visual representations of a program or system. (e.g. UML, etc.) 10% 60% 30% 20

K-7 Knowledge of how programs communicate across networks using asynchronous
and synchronous techniques. (when to use and why)

0% 47% 47% 20

K-8
Knowledge of Software Integration Management Systems – how industry
documents final product builds to show all of the elements that have changes
and checks those that have not changed.

16% 32% 53% 20

K-9 Knowledge of event handling in a GUI. 12% 71% 18% 17

K-10 Knowledge of Regression Testing Development – how to test software using
software.

10% 35% 55% 20

K-11 Knowledge of the appropriate use of cookies. 10% 65% 25% 20

K-12 Knowledge of how applets differ from applications in terms of program form,
operating context, and how they are started.

20% 55% 25% 20

K-13 Knowledge of two or more operating systems that are current industry
standards (e.g. Linux, Windows Apple OS).

5% 68% 26% 19

K-14 Knowledge of error handling constructs. 10% 75% 15% 20

K-15 Knowledge of the differences between client-side scripting and server-side
scripting.

10% 65% 25% 20

K-16 Knowledge of common program architectures (e.g. standalone, three-tier, web-
based, cloud-based, serverless, microservice).

5% 53% 42% 19

K-17 Knowledge of the local development cycle (e.g. build, deploy, test, debug). 15% 75% 10% 20

K-18 Knowledge of server software patterns, messaging patterns both async and
synch.

11% 39% 50% 18

K-19 Knowledge of database integration/management software. 5% 58% 37% 19
K-20 Knowledge of AI and ML methods and algorithms. 0% 39% 61% 18

K-21 Knowledge of software collaboration tools (e.g. version control, bug tracking,
continuous integration).

17% 56% 28% 18

Knowledge

17

K-22 Knowledge of the limits vs actual process of continuous integration and
production deployment practices of devsecops/devnetsecops.

0% 42% 58% 19

K-23 Knowledge of cybersecurity and privacy principles and methods that apply to
software development.

5% 80% 15% 20

K-24

Knowledge of system and application security threats and vulnerabilities (e.g.
buffer overflow, mobile code, cross-site scripting, Procedural
Language/Structured Query Language [PL/SQL] and injections, race conditions,
covert channel, replay, return-oriented attacks, malicious code).

0% 56% 44% 18

K-25 Knowledge of code security (e.g. hashing, encryption, cryptography, threat
modeling).

5% 47% 47% 19

K-26 Knowledge of Privacy Impact Assessments in terms of privacy and identity
management.

7% 47% 47% 15

K-27 Knowledge of cyber threats and vulnerabilities. 5% 90% 5% 19

K-28
Knowledge of software related information technology (IT) security principles
and methods (e.g. modularization, layering, abstraction, data hiding,
simplicity/minimization).

0% 63% 37% 19

K-29 Awareness of standards such as PCI, PHI, and GDPR. 0% 47% 53% 17

K-30
Knowledge of basic security practices including threats and vulnerabilities that
may arise from interactions with other systems, external and legacy code. 11% 58% 32% 19

K-31 Knowledge of computer network fundamentals (e.g., TCP/IP, HTTPS, ports,
firewall, LAN/WAN, etc.)and network security methodologies.

16% 58% 26% 19

K-32 Knowledge of implementation and utilization of cloud services including
deployment (e.g. AWS, Microsoft Azure).

16% 53% 32% 19

K-33 Awareness of cloud computing concepts (e.g. IoT, edge computing). 16% 42% 42% 19

K-34 Knowledge of software development and implementation for communicating
and gathering data from IoT devices.

18% 35% 47% 17

K-35 Knowledge of the difference between AI and ML. 0% 56% 44% 18

K-36 Awareness of current and specialized AI and ML tools and their application to
business problems.

0% 44% 56% 18

K-37 Conceptual knowledge of PKI. 6% 44% 50% 16
K-38 Knowledge of DevSecOps. 0% 53% 47% 17
K-39 Knowledge of structured and unstructured data sources. 0% 58% 42% 19
K-40 Knowledge of open source software and risks involved. 5% 89% 5% 19
K-41 Knowledge of ethics and its application to software development. 5% 84% 11% 19

K-42 Knowledge of best practices for Design/UI/UX/accessibility as applied to
software development.

0% 74% 26% 19

K-43 Knowledge of lifecycle development/steady state/end of life. 11% 63% 26% 19
K-44 Knowledge of mobile application development. 28% 50% 22% 18
K-45 Knowledge of how to protect data privacy through code. 5% 47% 47% 19

K-46

Knowledge of process flow and how the upgrade/implementation of software is
accomplished through definitive understanding of team collaboration in
DevOps, End of Life Cycle, and including importance of foundational security.

6% 33% 61% 18

K-47 Knowledge of performing integrated quality assurance testing for security
functionality and resiliency attack.

0% 31% 68% 19

K-48

Knowledge of how to identify security implications in the software acceptance
phase, including completion criteria, risk acceptance and documentation,
common criteria, and methods of independent testing and report concerns to
IT/software team.

0% 42% 58% 19

K-49
Knowledge of applications with public keying by leveraging existing public key
infrastructure (PKI) libraries and incorporating certificate management and
encryption functionalities when appropriate.

11% 22% 67% 18

K-50
Knowledge of how to identify and leverage the enterprise-wide security services
while designing and developing secure applications (e.g., Enterprise PKI,
Federated Identity server) when appropriate.

6% 6% 88% 17

18

K-51
Knowledge of how to identify and analyze user needs and use needs to
establish a plan in the selection, creation, evaluation, implementation and
administration of information technology systems.

6% 50% 44% 18

K-52
Knowledge of security requirements into application design elements including
documenting the elements of the software attack surfaces, conducting threat
modeling, and defining any specific security criteria.

6% 28% 67% 18

K-53 Knowledge of architecture patterns and when to use them to build applications. 11% 47% 42% 19

K-54 Knowledge of algorithms and data structures (e.g. big-O, linked lists, hash maps,
sorting, etc.).

0% 42% 58% 19

K-55 Knowledge of Binary search tree and how binary search works. 0% 42% 58% 19
K-56 Knowledge of Hash maps. 5% 37% 58% 19

S-1
Skill in using built-in functions as well as skill in creating custom functions,
subroutines, and procedures within software using scripting languages. 15% 70% 15% 20

S-2 Skill in integrating standard object model components with server pages in
support of the User Expierence.

10% 55% 35% 20

S-3 Skill in conducting software debugging. 15% 75% 10% 20

S-4
Skill in creating programs that validate and process multiple inputs including
command line arguments, environmental variables, and input streams. 11% 74% 16% 19

S-5 Skill in writing code in current programming languages and frameworks. 16% 79% 5% 19

S-6 Skill in developing applications that can log and handle errors, exceptions, and
application faults and logging.

17% 50% 33% 18

S-7 Skill in applying root cause analysis (RCA) techniques to solving
software/customer issues.

6% 28% 67% 18

S-8 Skill in the live production environment (e.g. monitoring, logging, alerting,
remote debugging).

11% 28% 61% 18

S-9
Skill in using electronic mail software (e.g. Google Gmail; IBM Notes Hot
technology; Microsoft Exchange Server Hot technology; Microsoft Outlook Hot
technology).

22% 56% 22% 18

S-10
Skill in using graphical user interface development software (e.g. Graphical user
interface GUI builder software; Graphical user interface GUI design software;
Salesforce Visualforce Hot technology).

11% 53% 37% 19

S-11
Skill in using object or component oriented development software (e.g. C++ Hot
technology; Document Object Model DOM Scripting; Python Hot technology;
Simple API for XML SAX).

6% 50% 44% 18

S-12 Skill in creating classes that use inheritance aspects of the object-oriented
paradigm.

11% 63% 26% 19

S-13 Skill in using, incorporating and utilizing cookies. 11% 58% 32% 19

S-14 Skill in implementing programs that use local or remote databases with
standard protocols.

5% 53% 42% 19

S-15 Skill in using a scripting language on the server side and the client side of a
distributed program .

11% 61% 28% 18

S-16 Skill in evaluating and reporting software needs, constraints, analysis for
application-specific concerns.

16% 58% 26% 19

S-17 Skill in implementing levels of security in distributed software applications and
applets.

11% 50% 39% 18

S-18
Skill in deploying secure software according to secure software deployment
methodologies, tools, and practices (e.g. PCI,GDPR, HIPPA, CCPA). 5% 21% 74% 19

S-19 Skill in mobile application development. 11% 58% 32% 19
S-20 Skills such as time management, risk management. 5% 79% 16% 19
S-21 Skill in incorporating user experience feedback into software. 11% 63% 21% 18

S-22 Skill in integrating third-party open-source resources into software, including
minimizing risk.

21% 37% 42% 19

Skills

19

S-23 Skill in learning new and/or industry standard tools involved in the development
of software.

26% 63% 11% 19

A-1 Ability to both mentor and be mentored; provide critical feedback as well as
accept critical feedback two-way.

5% 55% 40% 20

A-2 Ability to comprehend and execute both written and oral instructions by asking
clarifying questions.

11% 68% 21% 19

A-3 Ability to effectively communicate technical concepts and constraints in written
and oral form to technical team members, stakeholders.

11% 79% 11% 19

A-4 Ability to work effectively in multi-disciplinary teams to apply information
technology in support of organizational goals.

5% 75% 20% 20

A-5 Ability to produce technical content for tech writers. 5% 60% 35% 20

A-6 Ability to manage your own software development project activities and
deliverables in a timely and efficient manner.

0% 72% 28% 18

A-7
Ability to work on team projects and demonstrate critical thinking, teamwork,
oral communications, intercultural appreciation, and technical and information
literacy skills.

5% 80% 15% 20

A-8 Ability to research and be able to find other sources to answer the problem. 5% 74% 21% 19

A-9 Ability to engage with users and understand their user experience. 10% 70% 20% 20
A-10 Ability to draw on prior knowledge and experience in a new situation. 5% 80% 15% 20

Abilities

20

	Software Development KPIs for website.pdf
	KPI Sheet

	Software Development KSAs for website.pdf
	Sheet2

	Software Development SLOs.pdf
	SLO_Final

	Software Development.pdf
	Software Development

	Software Development KPIs 2023.pdf
	Sheet1

	Software Dev KSAs Final 2023.pdf
	Copy of KSA (2)

	Software Dev KSAs Final 2023.pdf
	Copy of KSA (2)

	Software Development KPIs 2023.pdf
	Sheet1

	Software Development SLOs.pdf
	SLO_Final

	Software Dev 2 vs 4 Year.pdf
	Software Dev

	Software Development KPIs 2023 for Resource Book.pdf
	Sheet1

	Software Development SLOs for Resource book.pdf
	SLO_Final

	Software Development SLOs for Resource book.pdf
	SLO_Final

