This work is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International.

Heartland Community College Master Course Syllabus

Division Name:	CTE	
Course Prefix and Number:	MAIN 220	
Course Title:	Mechatronics	
DATE PREPARED:	August 25, 1994	
DATE REVIEWED:	November 2019	
DATE REVISED:	November 2019	
PCS/CIP/ID NO:	12-144201	
IAI NO. (if available):		
EFFECTIVE DATE OF FIRST CLASS:	Fall 2020	
CREDIT HOURS:	3	
CONTACT HOURS:	4	
LECTURE HOURS:	2	

PREREQUISITE(S):

-Completion of MAIN 101

CATALOG DESCRIPTION:

LABORATORY HOURS:

Mechatronics covers electrical and mechanical integration, as well as the repair and installation of advanced automation. You will learn about robotic operations, motor controls, safety, and maintenance. Additionally, you will learn troubleshooting techniques for automation systems.

2

TEXTBOOK:

Instructors for this class should use the following textbooks or comparable text that addresses at a minimum the topics listed in the Course Outline and that provides students with the opportunity to achieve the learning outcomes for this course:

Amatrol Learning Content (available via activation codes)

RELATIONSHIP TO ACADEMIC DEVELOPMENT PROGRAMS AND TRANSFERABILITY:

MAIN 220 was designed to meet the specific needs of an Associate of Applied Science degree and not necessarily as a transfer course, particularly in relation to the Illinois Articulation Initiative. This course may transfer to various institutions in a variety of ways. Please see an academic advisor for an explanation concerning transfer options.

LEARNING OUTCOMES:

Course Outcomes		Essential	Range of Assessment
		Competencies	Methods
1.	Physically demonstrate proper safety	Т	Labs
	used in an automation and control		
	environment		
2.	Identify the input and output	PS/CT	Assignments
	commands required for robot		Exams/Quizzes
	integration in an automated process		Labs
3.	Identify the input and output	PS/CT	Assignments
	commands required for variable		Exams/Quizzes
	frequency drives in an automated		Labs
	process		
4.	Identify the input and output	PS/CT	Assignments
	commands required for motor controls		Exams/Quizzes
	in an automated process		Labs
5.	Apply mechanical, electrical, motor,	Т	Assignments
	and fluid theories to a complete		Labs
	automated system		
6.	Given an automated system	Т	Assignments
	troubleshoot the problem causing the		Labs
	system not to function		Final Project
7.	Research and apply, along with reflect	С	Assignments
	and share, in written form,		Final Project
	information about industrial		
	technology as it relates to the		
	student's field of study		

ESSENTIAL COMPETENCIES:

Communication (C) - Students communicate effectively.

Problem Solving/Critical Thinking (PS/CT) - Students think critically to solve problems or explore issues.

Technology (T) - Students appropriately utilize technology.

PROGRAM OUTCOME(S):

- Repair and install advanced automation, including robotic operations. (MAIN 220)
- Develop specialized technical skills in one or more areas (Design & Fabrication, Construction, Electronics, Renewable Energy, Facilities Maintenance, Industrial Maintenance, and/or Welding).

COURSE/LAB OUTLINE:

- 1. Safety
- 2. Control machinery
- 3. Robotic control
- 4. Manufacturer and engineering documentation
- 5. Machine start-up
- 6. Preventive maintenance
- 7. Measurement devices

METHOD OF EVALUATION (Tests/Exams, Grading System):

Assessment Method	% of Final Grade
Exams/Quizzes	20-40%
Labs	20-40%
Assignments (may include a Final Project)	20-40%
TOTAL	100%

Course grades will be determined by the use of the following grading scale:

A	90-100%
В	80-89%
С	70-79%
D	60-69%
F	Below 60%

REQUIRED WRITING AND READING:

Documentation is an important part of this course. All labs are to include descriptive comments within the write-up/answer section relating to each lab. Students will be expected to read assigned selections from the textbook and or labs, articles or other course related materials, at a minimum of 25 pages per week. Estimate is based on a 16-week course schedule. Please note if your class is not a 16-week class your weekly reading assignment will be increased. There is no formal research or writing assignments in this course. However, discipline specific writing and documentation is an important part of these courses, therefore discipline appropriate writing/reading methods will be taught and used in this course.

SAMPLE COURSE CALENDAR:

This sample course calendar is provided to guide instructors; each instructor will modify to suit.

Module # 0	Module Topic(s) Orientation
1	Introduction to Electric Motor Control Manual Motor Control and Overload Protection
2	Control Ladder Logic Control Relays and Motor Starters
3	Exam #01
4	Introduction to Variable Frequency AC Drives
5	Variable Frequency AC Drives - Speed and Torque Control
6	Variable Frequency AC Drives - Accel./Decel. and Braking
7	Variable Frequency AC Drives - Fault Diagnostics and Troubleshooting
8	Exam #02
9	Automation Operations Programmable Logic Controller Operation Basic PLC Programming
10	PLC Motor Control
11	PLC Timer and Counter Instructions
12	Pick-and-Place Feeding
13	PLC Event Sequencing
14	Indexing
15	Sorting and Parts Storage
16	Exam #03