

We designed an experiment to evaluate change in students' spatial skills as a result of completing an earth science course. Our test subjects included high school students in earth science classes, college level nonscience majors enrolled in large enrollment introductory geoscience courses and introductory level geoscience majors. They also varied as to whether their course had a hand-on laboratory experience or used supplemental Geographic Information System (GIS) based activities. We measured all students' ability to mentally rotate three-dimensional objects and to construct a three-dimensional object from a twodimensional representation before and after taking the earth science

Results show an improvement in spatial skills for all groups after completing the science course. We also observed a consistent improvement in spatial skills overall from high school level science to courses for majors, which is possibly related to their increased exposure to science. A subgroup of the test subjects among both high school and the college non-science majors completed supplementary GIS activities. The GIS implementation at the high school level was more extensive and resulted in significant improvements in both categories of spatial ability. At the college level, the non-science majors that used the GIS curriculum showed no significant difference from those that did not, probably because the time spent on the curriculum was too short. At the college level, the geoscience majors had nearly three times the improvement of non-science majors in both categories of spatial ability. This can most likely be attributed to hands-on, weekly laboratory experiences, which were not part of the course for non-science majors. Students choosing science majors typically have much higher spatial skills than the average first or second year non-science major, however there were large variations in spatial ability within all groups. These results suggest that we evaluate teaching strategies in all courses to ensure that students can interpret and understand the visual imagery used in lectures.

Spatial Ability Development in the Geosciences

Teaching with GIS

A GIS allows students to manipulate and interrogate two-, three- and four-dimensional visualizations in ways not possible with traditional maps, photographs and satellite imagery. Exploring spatial and temporal relationships in geologic data has the potential of developing visualization skills as students view both two- and three-dimensional representations of earth processes. For example, a GIS allows quantitative and visual searches and queries of spatial data sets, as well as changes in data symbolization and overlay of different data sets to reveal new relationships.

Two GIS modules were completed by students at the high school and college levels. The first, Exploring the Dynamic Earth, consists of five units covering the topics of plate tectonics and geologic hazards. Examples of topics in the modules are shown in figure 1.

Measuring Spatial Skills

Results of Spatial Relations Test

Spatial relations ability, as measured with the Cube Comparison test - requires the subject to mentally rotate an object about its center - is timed (3 minutes to complete 21 problems)

is scored by subtracting the number incorrect from the number correct

	Mean (Pre)	SD	Ν	Mean (Post)	SD	Change	Hake
HSC	3.8	4.8	139	5.9	5.1	2.1 (p < 0.0001)	.12
HSE	4.3	5.3	94	6.8	5.6	2.5 (p < 0.0001)	.15
Geos 212	6.6	4.1	96	8.1	5.3	1.4 (p < 0.01)	.10
Geos 218	7.1	4.3	78	8.4	4.8	1.3 (p < 0.02)	.09
Geos 251	9.3	4.2	19	12.6	4.6	3.3 (p < 0.004)	.28
Geos 256	6.7	6.0	25	10.6	6.7	4.0 (p < 0.005)	.27

Figure 5. Means and Standard Deviations for Pre- and Post-tests of Spatial Relations

- Each set of students (at their respective levels) began the study with statistically the same performance on the pre-test spatial relations

Improvement in spatial relations is statistically significant for all groups. Therefore, simple participation in a geoscience course results in an improvement in spatial relations ability.

We did not observe differences in the spatial relations skills of students that used the GIS from those who did not. The improvements by majors on the test of spatial relations, evaluated by the normalized Hake score, are nearly triple the improvements of the non-science majors.

Figure 3. The subject is presented with a pair of

cubes, marked with a single letter, number, or symbol on each face. Each face is unique, with no letter or number repeated on a cube. The subject must choose whether the two cubes are the same or different. Analysis of the cubes involves mentally rotating one cube to assess if the cubes match on the visible sides.

Figure 1. In Searching for Evidence students explore the relationship between topography and the plate boundaries using maps in orthographic and geographic projections, shaded relief maps, three-dimensional block diagrams and two-dimensional cross sections

The second GIS module, Exploring Tropical Cyclones, is a four-unit exploration of tropical cyclones. An example topic is shown in figure 2.

Figure 2. In Recipe for a Cyclone, students view animations of satellite images of hurricane movement and explore the spatial listribution of cyclone formation

Results of Spatial Orientation Test

Spatial orientation ability, as measured with the Surface Development test - requires the two-dimensional figure to be mentally folded to align the edges - is timed (6 minutes to complete 6 problems)

- is scored by subtracting the number incorrect from the number correct

Figure 4. The subject is presented with a twoimensional unfolded figure and a three-dimensional representation of the folded figure and must identify corresponding edges in the two different drawings. This requires the ability to imagine multiple movements of the unfolded figure.

	Mean (Pre)	SD	N	Mean (Post)	SD	Change	Hake
HSC	2.2	10.8	113	2.3	13.2	0.1 (p < 0.9)	.00
HSE	5.0	11.5	92	8.9	12.3	3.9 (p < 0.0001)	.16
Geos 212	1.0	13.2	91	2.2	15.8	1.3 (p < 0.14)	.04
Geos 218	2.4	11.2	73	4.2	11.7	1.8 (p < 0.08)	.07
Geos 251	13.9	12.1	19	18.1	11.8	4.1 (p < 0.003)	.26
Geos 256	13.7	10.9	19	18.5	7.6	4.5 (p < 0.06)	.29

Figure 6. Means and Standard Deviations for Pre- and Post- Test of Spatial Orientation

All groups have a very large standard deviation indicating a wide range of ability

The high school experimental group had a statistically significant improvement, while the control group showed almost no change at all. This difference in improvement could be attributed to the extended use of the GIS curriculum

There was no statistically significant difference between Geos 212 and Geos 218 (college-level geoscience courses for non-science majors) performance on the pre-test or the post-test - We were unable to measure an effect of the GIS curriculum on students' spatial relations or

spatial orientation ability among students in introductory college courses improvements are seen in the spatial orientation scores for Geos 251 and Geos 256 that were not seen in the introductory geoscience courses for non-science majors

Gender Differences

	Mean	SD	N	Mean	SD	Change	Hake
	(Pre)			(Post)			
High school Male	4.2	4.7	64	6.0	4.9	1.8 (p < 0.003)	.11
High school Female	3.4	4.9	75	5.7	5.3	2.3 (p < 0.001)	.13
Non-science major Male	7.5	4.4	74	8.6	5.4	1.2 (p < 0.05)	.08
Non-science major Female	6.4	4.0	100	7.9	4.8	1.5 (p < 0.003)	.10
Science major Male	8.5	6.2	24	11.9	6.2	3.3 (p < 0.01)	.27
Science major Female	7.0	4.2	20	11.1	5.7	4.1 (p < 0.002)	.29

	Mean	SD	Ν	Mean	SD	Change	Hake
	(Pre)			(Post)		C	
High school Male	3.7	12.3	50	1.9	14.9	-1.8 (p < 0.27)	07
High school Female	1.0	9.5	63	2.6	11.8	1.6 (p < 0.13)	.06
Non-science major	2.3	12.7	71	4.2	15.9	1.8 (p < 0.06)	.10
Male							
Non-science major	1.0	12.1	93	2.3	12.6	1.5 (p < 0.11)	.07
Female							
Science major	17.9	10.5	20	20.3	9.3	2.4 (p < 0.18)	.20
Male							
Science major	9.3	11.0	18	16.1	10.2	6.7 (p < 0.002)	.33
Female							

Figure 8. Means and Standard Deviations for Tests of Spatial Orientation

- For both the high school students and introductory non-science majors, there is no gender-related statistical difference in the spatial relations or spatial orientation skills in the initial or final tests scores.

- There are observable differences by gender among science majors. Males are starting the courses with a significantly higher ability on both tests; however, female students experience nearly double the improvement of males and have statistically indistinguishable skills from those of males at the end of the semester.

Figure 7. Means and Standard Deviations for Tests of Spatial Relations

Temporal Changes

fault or fold represented on a two-dimensional map.

Figure 9. Means and Standard Deviations for Tests of Spatial Relations

- High school students are completing their freshman year with the average spatial relations ability of students entering the University

	Mean	SD	N	Mean	SD	Change	Hak
	(Pre)			(Post)		_	
High School	3.8	4.8	139	5.9	5.1	2.1 (p < 0.0001)	.12
(HSC)							
Non Science Majors	6.8	4.2	174	8.2	5.1	1.4 (p < 0.0001)	.10
(212, 218)							
Science Majors	7.8	5.4	44	11.5	5.9	3.7 (p < 0.0001)	.28
(251, 256)							

Mean	SD	Ν	Mean	SD	Change
(Pre)			(Post)		
2.2	10.8	113	2.3	13.2	0.1 (p < 0.9)
1.6	12.3	164	3.1	14.1	1.5 (p < 0.02)
13.8	11.4	38	18.3	9.8	4.4 (p < 0.002)
	Mean (Pre) 2.2 1.6 13.8	Mean (Pre) SD 2.2 10.8 1.6 12.3 13.8 11.4	Mean (Pre) SD N 2.2 10.8 113 1.6 12.3 164 13.8 11.4 38	Mean (Pre) SD (Post) Mean (Post) 2.2 10.8 113 2.3 1.6 12.3 164 3.1 13.8 11.4 38 18.3	Mean (Pre) SD N Mean (Post) SD 2.2 10.8 113 2.3 13.2 1.6 12.3 164 3.1 14.1 13.8 11.4 38 18.3 9.8

Figure 10. Means and Standard Deviations for Tests of Spatial Orientation

High school students are completing their freshman year studies with the average ability of students entering the University as non-science majors.

- There are significant standard deviations, revealing a wide range of abilities in all groups.

- There is a marked difference in the spatial orientation ability of incoming students depending on whether they are a science major or non-science major, with majors having significantly higher abilities

Data Analysis

To measure changes in student spatial ability, we used pre- and post-test scores and paired Ttests to determine whether improvement in spatial ability was statistically significant. Improvement was considered significant for p value < 0.05. To compare the independent groups, we used one-way analysis of variance (ANOVA) of the mean scores. In addition, we calculated the Hake score for each group, which is a comparison of the improvement by a group, normalized by the maximum possible improvement. For all groups, the study sample includes only students who completed the spatial ability tests both at the beginning and end of the course.

Study Participants

High School

(HSE), students completed seven GIS units which required over 20 hours of instruction in the computer laboratory in addition to time spent finishing the questions as homework. (HSC), two other high schools served as a control group.

Large-Enrollment Introductory Courses for Non-Science majors

- (Geos 218)- Geologic Disasters and Society, students completed four GIS units (Geos 212)- Oceanography, served as a control group (did not complete any homework or other exercises that included activities designed to develop spatial skills)
- Both lectures include a significant number of maps, animations and other types of visualizations of Earth processes.

Geoscience Majors

- (Geos 251)- Introduction to Physical Geology,
- (Geos 256)- Computer Applications in Geosciences,
- These courses are the first courses taken as part of a degree in geosciences, thus the data set represents the spatial skills of typical first-year geoscience majors.