ACADs (08-006) Covered

4.2.7.1 5.2.2.1

Keywords

Components, functions, operation, Auxiliary feedwater, Startup, hot standby, plant cooldown, emergency.

Description

Supporting Material

OBJECTIVES

- 1. State the purpose of the Auxiliary Feedwater System.
- 2. List the major components in the AFW System and state the function of each.
- 3. Describe the operation of the AFW System during:
 a. Startup
 b. Hot standby
 c. Plant cooldown
 d. Emergency
- 4. Describe the normal line-up for the AFW System.
- 5. List the signals which initiate the automatic starting of the motor-driven and turbine-driven AFW pumps.

Purpose:

Serves as a backup system for feeding steam generators whenever RCS temperature is above 350°F and main feed system is not available.

Level must be maintained in SG even during emergency since SG is the reactor's heat sink.

Components:

- Two Motor Driven Pumps
- One Steam Turbine Driven Pump
- Two Condensate Storage Tanks
- Associated Piping, Valves, & Controls

Regional Center for Nuclear Education & Training

MDAFW Pump

- Each pump is capable of 100% capacity.
- 630 gpm (including recirculation flow) @1517 psi
 - Takes suction from one CST
 - Motors are air cooled
- Each pump feeds 2 SGs

MDAFW Pump

- The pumps may be operated manually or will start automatically upon detected loss of heat sink and loss of power events
- Automatically started by
 - 1) Low water level in any one SG (2 of 3 coincidence)
 - 2) Both MFPs tripped
 - 3) SI (Safety Injection)
 - 4) Blackout signal

Motor Driven AFW Pump Suction Piping

TDAFW Pump

- Power supply is Main Steam pressure upstream of MSIV's (Loops 1 & 2)
- Exhaust to atmosphere
- Apply feedwater to SGs during emergencies when the main feedwater and motor-driven pumps are inoperable
 - Capacity 1175 gpm (almost twice capacity of MDAFW pump)
 - Aligned to all four SGs
 - Auto started by 2 SGs at low level setpoint (2 of 3 coinc per SG)

Turbine Driven AFW Pump

Condensate Storage Tanks(CST)

- Vertical, cylindrical tanks of reinforced concrete with a stainless steel liner
- CST #1 normally lined up to provide water to the AFW system (Manual valves)
- CST #2 provides an alternate water source

CST Capacity

- Capacity 480,000 gallons each
- All non-safety system consuming CST water take a suction via a standpipe with nozzle level that ensures the minimum water level is maintained available

AFW Actuation Signal

- Automatic features AFW is aligned to be placed in service automatically in the event of an emergency
 - Auxiliary feedwater actuation signal (Motor Driven)
 - SI signal (associated train)
 - Loss of offsite power (blackout) associated train
 - Lo-Lo Level in SG 38% 2/4 on 1/4 SG
 - Both SGFPs trip (2/2)

TDAFW Actuation Signal

Actuating signals

- Lo-Lo SG water level 38% 2/4 on 2/4 steam generators
- Loss of offsite power (black out on either train)

Objectives Review

- 1. State the purpose of the Auxiliary Feedwater System.
- 2. List the major components in the AFW System and state the function of each.
- 3. Describe the operation of the AFW System during:
 a. Startup
 b. Hot standby
 c. Plant cooldown
 d. Emergency
- 4. Describe the normal line-up for the AFW System.
- 5. List the signals which initiate the automatic starting of the motor-driven and turbine-driven AFW pumps.

