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Figure 2-1 Refractive index of several optical materials as a
function of wavelength
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Figure 2-2 Absorption of light passing through a transparent
medium of thickness x
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Figure 2-3 Transmission characteristics of several optical materials:
(a) fused silica, (b) fused quartz, (c) Pyrex, and (d) Zerodur
(Source: www.escoproducts.com)
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Figure 2-4 Reflection and transmission of light incident
perpendicular to an air-glass interface
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Figure 2-5 Reflection and refraction of initially unpolarized light
containing equal amounts of Ergand Ey
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Figure 2-6 Absence of reflected light at a Brewster angle of
incidence when incident light is totally polarized as Ey
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Figure 2-7 Schematic diagram of a typical vacuum deposition
chamber
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Figure 2-8 Reflection at multiple interfaces with different refractive

indices
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Figure 2-9 Reflection at top and bottom interfaces of coating material.
Reflected rays 1 and 2 are 180 °out of phase, leading to destructive
interference and little or no reflected light. 11



4 layers
6 layers -

0.5
less than g

N

Figure 2-10 Increase of reflectivity at a specific wavelength /. after

1.5
more than .y —————>

Ratio of a wavelength near 24 to a specific design wavelength 24

reflection at multiple layers of coating

0.500

0.600
0.700

(.800

(.900

0.950
0.960
0.970

0.980

0.990

(0.995

Reflectance



0 - T T T = =l W R - M
z Vd - ' /
/ I
0.8 ! Aluminum /1 /e e
’I’_______.._.._.._.._.._I.-? \
! !/ X Rhodium
2 06/ AN
g ! I " Gold
S d 7 ‘,'\
= ! P
a4 e
.l a7 Copper
AT
0.2 [£ \ ,"\
‘\, Silver
200 300 400 500 600 700 800 000 1000
Wavelength (nm)

Figure 2-11 Reflectance of some metals as a function of

wavelength
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Figure 2-12 Properties of a band pass filter
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Figure 2-13 Properties of a high pass cut-off filter



Optical density (OD) —»

400 600 300 1000 1200

Wavelength (nm) —»

Figure 2-14 Optical densities of some neutral-density filters
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Figure 2-15 Percentage of transmission of a specific narrow-band

filter
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Figure 2-16 Transmission characteristics of a radiometric filter
showing a nearly uniform transmission between 400 nm and 1000 nm
(Image as revised in Fundamentals of Light and Lasers, 3" Edition)
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Figure 2-17 Transmission characteristics of a photometric filter
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Figure 2-18 Transmission characteristics of a safety goggle
suitable for protection from CO, laser beams
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Figure 2-19 Cross-sectional view of a triangular optical rail with
carriage, adjustable rod, lens support and lens
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Figure 2-20 Double rectangular optical rail
(Courtesy: Newport Corporation)
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Figure 2-21 Flat-bed bench for optical mounting
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Figure 2-22 Isolation table with pneumatic legs
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(a) Sliding grip (b) Spring grip (¢) Swing arm

(d) Threaded ring (e) Self-centering

Figure 2-23 Different types of lens/mirror mounts
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(a) Iris diaphragm (b) Filter holder (¢) Filter holder

(d) Prism holder (e) Laser holder

Figure 2-24 Other types of holders for optical elements
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(a) Scissors jack (b) Sine table

Figure 2-25 Schematic diagram of a scissors jack and a “sine
table”
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(a) Linear translator (b) Two-dimensional translator

Figure 2-26 Schematic diagrams of one-dimensional and
two-dimensional translators
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Figure 2-27 Picture of a simple rotational stage and a rotational
stage of designed to hold Polaroid sheets
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Figure 2-28 Combined rotational and translational stage
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Figure 2-29 One and two-dimensional tilting stages
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Figure 2-30 A commercial goniometer
(Courtesy: Newport Corporation)
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Figure 2-31 Schematic diagram for observing surface
imperfections on an optical element
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Figure 2-32 Schematic diagram of an optical setup used to observe
internal defects in an optical element
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Figure 2-33 Experimental setup designed to observe interference

fringes on a flat optical element
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Figure 2-34 Typical interference patterns observed on flat optical
test plates of different flatness



