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(a) Water waves (b) Wave fronts

Figure 5-1 Water waves and wave fronts
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{b) Wave displacement at a fixed position on the pond as a function of time

Figure 5-2 Two aspects of wave motion for a traveling wave
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Figure 5-3 Profiles of the electric (E) and magnetic (B) fields in a
light wave at an instant of time, E-field vibrations are in the vertical
plane; B-field vibrations are in the horizontal plane. The wave
propagates with a speed v in a direction perpendicular to both the E
and B vibrations.
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Figure 5-4 Superposition of two waves moving along the same
direction
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Figure 5-5 Interference of two identical sinusoidal waves
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Figure 5-6 Huygens’principle applied to the propagation of plane
and spherical wave fronts
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Figure 5-7 Wave interference created by overlapping waves from
coherent sources S and S'
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Figure 5-8 Young’s double-slit interference experiment showing (a)
general setup and (b) typical interference fringes (artistic reproduction)
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Figure 5-9 Schematic for Young's double-slit interference
experiment. Source Syis generally a small hole or narrow slit,
sources S1 and S, are generally long, narrow slits perpendicular to

the page.
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Figure 5-10 Two-beam interference from a thin film. Rays
reflected from the film's top and bottom plane surfaces are brought
together at P by a lens.
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Figure 5-11 Single-layer AR coat on glass substrate
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Figure 5-12 Multilayer stack of quarter-wave thin films of
alternating high and low refractive indexes. Each film has an optical
thickness of A¢/4. Automatic phase shifts of 0 = w or 0 = 0 are show
at each interface. All of the reflected rays exit the stack in phase with
one another and interfere constructively.

14



(a) Pinhole diffraction (b) Single-slit diffraction (c) Straight-edge diffraction

Figure 5-13 Sketches of several common diffraction patterns
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Figure 5-14 Diffraction pattern from a single slit
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Figure 5-15 Positions of adjacent minima in the diffraction
patterns (Drawing is not to scale.)
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Figure 5-16 General diffraction geometry involving source,
aperture, and screen
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Figure 5-17 Fraunhofer diffraction pattern for a single slit
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Figure 5-18 Fraunhofer diffraction pattern for a circular aperture
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Figure 5-19 Fraunhofer diffraction pattern for a rectangular

aperture
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Figure 5-20 Diffraction of light through a grating under

Fraunhofer conditions
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Figure 5-21 Fraunhofer diffraction pattern formed in the focal
plane of a lens of focal length f (Drawing is not to scale.)
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Figure 5-22 Rope waves and polarization
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Figure 5-23 Polarization of rope waves by a picket fence
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Figure 5-24 Linearly polarized light with transverse electric field
E propagating along the z-axis
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Figure 5-25 Effect of polarizers on unpolarized light
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Figure 5-26 Controlling light intensity with a pair of polarizers
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Figure 5-27 Polarization by reflection at Brewster s angle
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Figure 5-28 Brewster windows in a HeNe gas laser
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Figure 5-29 Unpolarized light passing through both faces at a
Brewster angle
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Figure 5-30 Arrangement of apparatus for recording intensity
distribution of Fraunhofer diffraction pattern from a circular
pinhole.

32



Diode
laser

Incident laser beam

Tiltable mount

Figure 5-31 Using the grooves on a machinists rule as a reflection
grating
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Figure 5-32 Polarization by reflection at Brewster s angle

34



—_> Q€

™,
E
{ };I

O

Figure 5-33
(Laboratory 1-5B: Interference and Diffraction)
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(Laboratory 1-5B: Interference and Diffraction)
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Figure 5-35
(Laboratory 1-5B: Interference and Diffraction)
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Figure 5-36 Experimental Setup for Procedure A
(Laboratory 1-5B: Interference and Diffraction)
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Figure 5-37 Experimental Setup for Procedure B
(Laboratory 1-5B: Interference and Diffraction)
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Figure 5-38
(Laboratory 1-5C: Polarization)
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(Laboratory 1-5C: Polarization)
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Figure 5-40
(Laboratory 1-5C: Polarization)
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