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Figure 3-1 Ruby crystal
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Figure 3-2 Spectral distribution of laser output showing several
longitudinal modes with various loop gains Gy
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Figure 3-3 Laser emission between two isolated states is a
narrow line. But when the upper or lower laser level (or both)
span a band of closely spaced energy levels, the emission spans a
much wider range of wavelengths.
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Figure 3-4 Tunable dye-laser cavity using a stationary prism.

The prism refracts light of different wavelengths at different
angles, and a moving mirror selects which wavelength oscillates

in the laser cavity. Moving the mirror would tune the cavity to

emit other wavelengths.
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Figure 3-5 This green laser pointer includes two batteries, an
electronic drive, an 808 nm pump diode, a neodymium laser
emitting at 1064 nm, and a harmonic generator that doubles the
frequency to produce green light.



Figure 3-6 A) An argon-fluoride excimer laser being used in
LASIK surgery at the National Naval Medical Center Bethesda
(government photo, not subject to copyright). B) A

semiconductor photolithography system based on an argon-
fluoride laser (courtesy ASML).
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Figure 3-7 Types of gas-laser transitions and the bands in which
they occur
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Figure 3-8 Key energy levels and transitions in helium—neon
lasers. Electrons collide with helium atoms and excite them; then
the helium atoms collide with neon and excite the neon.
Transitions go between different pairs of energy levels. These are
the four best-known laser lines for the helium—neon laser.
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Figure 3-9 Structure of a HeNe laser. Red light passes through
a bore in the center of the tube. HR is a high-reflectivity back
mirror. OC is an output coupling mirror, which typically
transmits a small fraction of the light circulating in the cavity.
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Figure 3-10 Argon-ion laser lines



© © O

CO,

~

vy Vo 1«'3

10.5 wm (00°1) 7“ 7N
(10°0) (02°0) ENERGY
TRANSFER

9.6 pm
DE-EXCITATION
(01°0) —¥—

EXCITATON

GROUND

(00°0) "

Figure 3-11 CO, molecular vibration modes (top) and laser
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Figure 3-12 Schematic of a chemical laser
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Figure 3-13 Cutaway drawing of the first ruby laser. The laser
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beam it emits to the right is a deeper red. Mirrors are at both

ends of the rod.
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Figure 3-14 Highlighted elements are the most important for
solid state lasers. Note that most are rare earth elements with
similar electron configurations.
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Figure 3-15 Lamp pumping a solid state laser rod in an
elliptical laser cavity



(submillimeter)

Output

Pump diode beams beam
. : Output \
j Fold|nm!\‘ \

Resonator

Heat “— Thin disks —

B Sink

Figure 3-16 Thin disk lasers. A) shows a single thin disk,
illuminated from the side with pump diodes. B) show how a pair
of thin disks can be put in series optically in a W-shaped cavity.
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Figure 3-17 Laser energy levels in neodymium, showing
pumping both with lamps and with 808 nm diode laser
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Figure 3-18 Laser wavelength conversion. Light from 808 nm
pump diodes excites neodymium, generating laser light at 1064
nm, and harmonic generation shifts the wavelength to 532 nm in
the green range. The green light pumps a titanium-sapphire laser
that is tunable across wide range of wavelengths.
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Figure 3-19 Ytterbium laser transition in YAG compared with
that of neodymium. The pump line for Yb is much closer to the
laser line that it is for Nd, making ytterbium the more efficient

laser:
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Figure 3-20 In a vibronic laser, transitions occur between

bands of energy states rather than discrete energy levels, so the
laser can emit across a range of wavelengths as electrons drop
from different points in one band to different points in the other.
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Figure 3-21 Energy levels in an alexandrite laser
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Figure 3-22 Power generated by Cr:ZnSe and Cr:ZnS lasers
across their operating range, with atmospheric absorption shown
in the background. (Courtesy IPG Photonics)
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Figure 3-23 A simple Yb-fiber laser with wavelength-selective
mirrors forming a laser cavity
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Figure 3-24 Dual-core fiber structure
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Figure 3-25 Pump diodes can direct light into the outer core of
a fiber laser in two ways: through a coupler at the end, or
through a coupler spliced into the length of the fiber
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Figure 3-27 How a single pump photon can excite two thulium
atoms to the upper laser level. The trick is getting the thulium
atom that absorbed the light to transfer some of the energy to a
second thulium atom, exciting it to the upper laser level.
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Figure 3-28 Energy bands in a semiconductor. LEDs and diode

lasers emit light carrying the band-gap energy that is released
when an electron drops from the conduction band into the

valence band.
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Figure 3-29 Positive and negative carriers combine at the

junction between p- and n-type semiconductors, releasing light in
a LED
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Figure 3-30 Threshold in a diode laser marks the change from
spontaneous emission of an LED to stimulated emission in a laser
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Figure 3-31 A4 simple stripe-geometry diode laser. Current flow
is vertical and confined to a stripe in the junction about Sum wide
and 300 to 500um long—the length of the crystal (horizontal). In
this example, the right edge of the chip is the output mirror, and
the left edge is a total reflector.
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Figure 3-32 Beam divergence from an edge-emitting diode laser
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Figure 3-33 Qutput of an array of several parallel stripes on a
single chip can be combined to generate higher powers. Several
arrays can be combined in a monolithic laser bar, and bars can

be stacked together to form a “stack.”
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Figure 3-36 Operation of a quantum cascade laser, with a
single electron emitting a series of photons as it drops through a
series of quantum wells
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Figure 3-37 An optically pumped semiconductor laser (OPSL)
in a reflective cavity. The OPSL is a thin disk containing a stack
of quantum wells and a reflector, but it does not contain a diode
junction or current guiding structures. The folded cavity can
include a harmonic generator, to double the OPSL s near-
infrared fundamental output to visible wavelengths.
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(C) Etalon-tuned dye laser (pumped by continuous-wave laser).

Figure 3-38 Simple, low-power, tunable dye lasers
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Figure 3-39 Operation of a free-electron laser. High-speed
electrons pass through an array of magnets, which bend the beam
back and forth. The electrons radiate light when their paths are
bent, as shown in the inset, producing a laser beam. (Courtesy of
University of California at Santa Barbara Quantum Institute.)



Figure 3-40 Laser guide star from the Keck-2 telescope on
Mauna Kea, Hawaii. The stars moved noticeably during the
three-minute exposure needed to record the laser beam.
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Figure 3-41 Ruby Crystal Absorption Data
(Image Courtesy of Northrop Grumman Corporation)



