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Figure 4-1 Vibrational and rotational modes of a diatomic
molecule
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Figure 4-2 Vibrational and rotational energy levels in a
diatomic molecule (levels not to same scale)
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Figure 4-3 Normal modes of vibration for CO,molecules
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Figure 4-4 Simplified energy-level diagram for CO-, laser

showing vibrational energy transfer
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Figure 4-5 Simple coaxial flowing CO, laser
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Figure 4-6 Optical and electrical system of 250 W CO,, laser
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Figure 4-7 Fast axial flow CW CO, laser
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Figure 4-8 Unstable resonator
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Figure 4-9 Traverse flow CW CO, laser
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Figure 4-10 Typical configuration of a gas transport laser. The
optical axis Is perpendicular to the page
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Figure 4-11 Oscilloscope trace of mode-locked train of pulses
from a CO, lasers, 200ns/division
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Figure 4-12 Laser area warning signs




