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Figure 4-1 Fused silica glass percent
transmission vs. wavelength
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Figure 4-2 Index of refraction of glass vs. wavelength
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Figure 4-3 Index of refraction of silica and doped
silica vs. wavelength
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Figure 4-4 Percent transmission vs. wavelength
for lithium niobate



Figure 4-5 Crystal structure of lithium niobate
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Figure 4-6 Ordinary and extraordinary indices of
refraction of lithium niobate vs. wavelength
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Figure 4-7 Percent transmission and index of
refraction of SU-8 vs. wavelength
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Figure 4-8 Silica-on-silicon buried channel waveguide
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Figure 4-9 Periodically segmented waveguide taper
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Bottom: Spectrum of flat-top AWGs

Figure 4-10 Top: Spectrum of Gaussian AWGs;
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Figure 4-11 Athermal AWG based on mechanical control
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Figure 4-12 Athermal AWG based on refractive index control
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Figure 4-13 b) V'MUX with
optical power monitoring
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Figure 4-14 Optical channel monitoring of 48 channels using
an athermal AWG
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Figure 4-15 Titanium diffused lithium niobate waveguide
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Figure 4-16 Electrode configuration for MZI
lithium niobate modulator
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Figure 4-17 Polymer buried channel waveguide
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Figure 4-18 Polymer waveguide connecting a VCSEL laser and
a photodetector. Top: in-plane interconnection.
Bottom: out-of-plane connection using 45° mirrors.
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Figure 4-19 Silicone waveguides for optical interconnects.
Courtesy of Dow Corning.
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Figure 4-21 Digital optical switch
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Figure 4-22 2 x 2 polymer digital optical switch
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Figure 4-23 a) Laser
configuration of a tunable
wavelength laser with a polymer
Bragg grating
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Figure 4-23 b) Output power
emitted by the tunable
wavelength laser with a polymer
Bragg grating
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Figure 4-24 Fabrication process for polymer strain sensor



Figure 4-25 Strain sensor based on polymer waveguide grating
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