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Figure 2-1 Absorption coefficient of different
materials vs. wavelength
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Figure 2-2 Index of refraction of silicon vs. wavelength
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Figure 2-3 Components of a basic optical fiber
fransmission system
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Figure 2-4 Long haul, regional, and
metropolitan networks
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Figure 2-5 Loss of power in optical fibers vs. wavelength
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Figure 2-6 Effect of dispersion on light pulses
transmitted through optical fibers



To Other

Equipment
. Optical Coupler
Transmitter Fiber Flyhead Connector or
e =i = Beam Splitter
|
I Ii
Electrical _| Drive Light
Signal | Circuit Source 1]
I _: Optical
___________________ Splice
Regenerator
i i
I - 3
Optical __ o Optical L
T Transmitter Electronics Receiver —
Receiver

Optical [ ] Signal L Electrical
An'?plifier e Photodetector Restorer T Signal

An Optical Communication System

Figure 2-7 An optical communication system that regenerates
the light signal along the transmission path
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Figure 2-8 An optical communication system that amplifies the
light signal along the transmission path
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Figure 2-9 Effect of an amplifier vs. a repeater on a
degraded optical signal
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Figure 2-11 Directional coupler device containing four S-bend
waveguides to bring waveguides close to each other and then
separate them
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Figure 2-12 a) Light Figure 2-12 b) SOI waveguide
distribution in optical
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Figure 2-13 a) Butt coupling; b) End-fire coupling,
c) Grating coupling; d) Spot-size converter
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Figure 2-14 Directional coupler splitting the incident
power P, into powers P, and P, in the two output waveguides
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Figure 2-15 Top: Single Y-branch splitting the incident
power into equal powers in the two output waveguides.
Bottom: Cascaded Y-branches.
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Figure 2-16 Detailed layout of Y-branch device
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Figure 2-17 Mach-Zehnder interferometer based on
3dB directional couplers
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Figure 2-19 MZI device used in biochemical sensing
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Figure 2-20 Ring resonator PIC device
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Figure 2-21 Notch filter transmission vs. wavelength. Resonant

wavelengths appear at approximately 1531, 1541, and 1551 nm,
with an FSR of about 10 nm.



Figure 2-22 Add-drop filter based on four-port ring
resonator device
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Figure 2-24 Add-drop filter in racetrack configuration
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Figure 2-25 b) Planar
waveguide Bragg grating. In one,
the grating sits at the top of the
waveguide. In the other, the
grating is created on the
waveguide sidewalls.
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Figure 2-26 Optical power reflected from a
Bragg grating vs. wavelength
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Figure 2-27 An SOI micro-ring modulator based on
the plasma dispersion effect
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Figure 2-28 Spectral responsivity of silicon PIN photodiodes



Figure 2-29 Silicon wafers containing many identical PIC
devices created by the fabrication process described in Module 1



Figure 2-30 Dicing of wafer into individual devices.
Courtesy of Advanced Motion Controls.
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Figure 2-31 Fiber array fabrication



Figure 2-32 a) Fiber arrays,
courtesy of AiDi

Figure 2-32 b) Fiber array,
courtesy of Hantech. This fiber
array is angle polished to avoid

back reflections of the optical

signal.



Figure 2-33 a) Wafer Figure 2-33 b) Wafer level
level testing of PICs, testing of PICs, courtesy of
courtesy of ACTPHAST VI Systems



Figure 2-34 a) Typical diode Figure 2-34 b) Tipical
laser package packaged device
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Figure 2-35 Circuit board with individually packaged chips
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Figure 2-36 Wire bond vs. flip-chip technologies



Die #2 /— Wire bonds

Die #1 Flip-chip bumps

C2C 2 COCDCOCICICHCICIC )

«— SiP substrate

-«—— Package bumps
~— Circuit board
S

NN

Figure 2-37 Example of a packaged 3D stacked system
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Figure 2-38 A4 2.5D system packaged using a silicon

interposer and TSVs
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Figure 2-39 A4 3D system packaged using TSVs
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Figure 2-40 Optical interconnect between two processor
chips. Courtesy of APIC Corporation.



	Slide Number 1
	Slide Number 2
	Figure 2-1  Absorption coefficient of different �materials vs. wavelength
	Figure 2-2  Index of refraction of silicon vs. wavelength
	Figure 2-3  Components of a basic optical fiber �transmission system
	Figure 2-4  Long haul, regional, and �metropolitan networks
	Figure 2-5  Loss of power in optical fibers vs. wavelength 
	Figure 2-6  Effect of dispersion on light pulses �transmitted through optical fibers
	Figure 2-7  An optical communication system that regenerates the light signal along the transmission path
	Figure 2-8  An optical communication system that amplifies the light signal along the transmission path
	Figure 2-9  Effect of an amplifier vs. a repeater on a �degraded optical signal
	Slide Number 12
	Figure 2-11  Directional coupler device containing four S-bend waveguides to bring waveguides close to each other and then separate them
	Slide Number 14
	Figure 2-13  a) Butt coupling; b) End-fire coupling;� 		c) Grating coupling; d) Spot-size converter
	Figure 2-14  Directional coupler splitting the incident �power P0 into powers P1 and P2 in the two output waveguides
	Figure 2-15  Top: Single Y-branch splitting the incident �power into equal powers in the two output waveguides.�Bottom: Cascaded Y-branches. 
	Figure 2-16  Detailed layout of Y-branch device
	Figure 2-17  Mach-Zehnder interferometer based on �3dB directional couplers
	Slide Number 20
	Figure 2-19  MZI device used in biochemical sensing
	Figure 2-20  Ring resonator PIC device
	Figure 2-21  Notch filter transmission vs. wavelength. Resonant wavelengths appear at approximately 1531, 1541, and 1551 nm, with an FSR of about 10 nm.
	Figure 2-22  Add-drop filter based on four-port ring �resonator device
	Figure 2-23  Add-drop filter transmission for the Through and Drop ports vs. wavelength. Resonant wavelengths once again appear at approximately 1531, 1541, and 1551 nm.
	Figure 2-24  Add-drop filter in racetrack configuration
	Slide Number 27
	Figure 2-26  Optical power reflected from a Bragg grating vs. wavelength
	Figure 2-27  An SOI micro-ring modulator based on �the plasma dispersion effect
	Figure 2-28  Spectral responsivity of silicon PIN photodiodes
	Figure 2-29  Silicon wafers containing many identical PIC devices created by the fabrication process described in Module 1
	Figure 2-30  Dicing of wafer into individual devices. �Courtesy of Advanced Motion Controls.
	Figure 2-31  Fiber array fabrication
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Figure 2-35  Circuit board with individually packaged chips
	Figure 2-36  Wire bond vs. flip-chip technologies
	Figure 2-37  Example of a packaged 3D stacked system 
	Figure 2-38  A 2.5D system packaged using a silicon �interposer and TSVs
	Figure 2-39  A 3D system packaged using TSVs
	Figure 2-40 Optical interconnect between two processor�chips. Courtesy of APIC Corporation.

