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Figure 3-1 The brightest regions are those of complete constructive interference, and the
darkest regions are those of complete destructive interference, varying through all of the
Shades of lightness in between. When cast on a screen, the bright regions will be the
color of the laser source used to create the interferogram and the dark regions will be
dark. However, most interferometer detectors output fringe data as grayscale plots like
this, or they might output false-color plots that grade the amount of OPD by color.
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Figure 3-2 The foci of an ellipsoid are located at d, and d,,. Note that it is
difficult to position a point source at one of these foci while retaining access to
the other focus.
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Figure 3-3 The foci of a hyperboloid are located at d,, and d,,. Note that it is
difficult to position a point source at one of these foci while retaining access to
the other focus.



Figure 3-4 The foci of a paraboloid are located at half the radius, R, of the best-fit sphere
and at infinity. Note that a point source can be located at the finite focus and the
paraboloid can be tested via the reflected, collimated light with only a minor obscuration
of its clear aperture. Alternatively, a collimated input can be used to test a paraboloidal
surface if the source is reflected by a spherical reflector centered at the paraboloid’s finite
focus.



Figure 3-5 These are photos of two different CGHs. These diffractive optical
elements shape a reference beam in an interferometer application.



Figures 3-6a (left) and 3-6b (right) The brightest regions now represent the highest
parts of the wavefront or surface map, and the darkest regions represent the lowest parts
of the map, varying through the shades of gray in between. However, most interferometer

detectors output fringe data as false-color plots so that the shades of gray can be easily
interpolated.
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Figure 3-7 As this schematic demonstrates, the Fizeau interferometer can be
used to produce Newton’s rings like those shown in the idealized interferogram.
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Figure 3-8 As this schematic shows, the Fizeau interferometer can be used to
test a window, producing linear fringes like those shown in the idealized
interferogram. Figure 3-9 shows actual fringes



Figure 3-9 These images show Newton'’s “rings” as parallel fringes between a calibrated
reference flat and a (nearly) flat window. Additional tilt fringes are added in the figure on
the right by lightly pressing on the optic under test. Additional fringes indicate that a
greater optical path is created by pushing. If there was a surface-height defect of size h in
the test surface, it would have created fringe deviation A, given fringe spacing S.
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Figure 3-10 The schematic (top) and the photograph (bottom) show that with a radial-
slide module and three-point optic mount, the laser-based Fizeau interferometer can be
used to test optical systems with long optical paths, even though the reference path is

relatively short.
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Figure 3-11 This schematic shows a Mach-Zehnder interferometer used to test
a reflective optical component or system.
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Figure 3-12 This schematic shows a Mach-Zehnder interferometer used to test
a transmissive optical component or system.
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Figure 3-13 This chart shows the scale factors for common interferometer

setups.
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Figure 3-14 The relatively simple layout of a Michelson interferometer usually uses an
AR-coated cube beamspilitter. It can be applied in versatile ways, including as a sensor,
where one arm of the interferometer may be used as the sensing element.



interferogram

path-shifting
reference
mirror

beamsplitter

optical system under test
(returning a collimated beam)

Figure 3-15 This configuration of a Michelson interferometer is known as a Twyman-
Green. This configuration allows the interferometer to test an arbitrary optical system that
returns a wavefront that matches the wavefront of the reference (which, in the case
shown, is a flat reference mirror).
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Figure 3-16 The schematic on the left shows a three-mirror ring Sagnac interferometer,
but any number of mirrors can be used to close the loop. The schematic on the right
shows the Sagnac interferometer geometry as light propagates in opposite directions

through a coil of optical fiber. Rotation of either ring creates a phase shift and, therefore,

interference.
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Figure 3-17 An extended, diffuse source or an expanded laser can illuminate a
Fabry-Perot interferometer (or etalon) cavity as shown, using a second lens to
localize fringes on a screen.
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Figure 3-18 These plots show the characteristic performance of an etalon for various
values of finesse from 1 to 100. It is evident that the higher the finesse, the narrower the
spectral resolution. However, higher finesse leads to lower light transmission.
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Figure 3-19 This schematic shows three types of beamsplitters common to
interferometers: cube, plate, and pellicle.
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Figure 3-20 This figure shows a measured interferogram (top), along with a
36-term mathematical Zernike polynomial fit (lower left)
and the residual WFE map (lower right) that results.
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Figure 3-21 This setup could be used to measure the RWFE of a flat mirror.



reference
transmission reflective surface

sphere (TS) or system under test

Figure 3-22 This setup could be used to measure the surface figure or RWFE
of a reflective optical system. This setup would be used to measure convex
mirror surfaces or the RWFE of optical systems that diverge a beam upon
reflection.
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Figure 3-23 This setup could also be used to measure the surface figure or
RWEFE of a reflective optical system. This setup would be used to measure
concave mirror surfaces or the RWFE of optical systems that converge a beam
upon reflection.
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Figure 3-24 This setup could be used to measure the TWFE of a transmissive
optical system.
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Figure 3-25 This setup is an example of an application of the setup shown in
Figure 3-24. In this figure, the generic transmissive optical system is replaced
with a right-angle prism.
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Figure 3-26 This figure shows an interferometric test setup used to measure a
prism’s apex angle error in the Porro configuration via a Twyman-Green or
Fizeau interferometer.
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Figure 3-27 This setup could be used to measure the TWFE of a transmissive
optical system that converges a beam.
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Figure 3-28 This setup could also be used to measure the TWFE of a
transmissive optical system that converges or diverges a beam.
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Figure 3-29 lllustrated here is the light path taken when a reference optic is
located at the cat’s-eye position. Interference will occur from this configuration,
and it must be understood so that it can be used or avoided during
interferometric testing.
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Figure 3-30 lllustrated here is the light path taken when a flat reference mirror
IS used to test a paraboloidal surface.
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Figure 3-31 lllustrated here is the light path taken when a curved reference
mirror is used to test a ellipsoidal surface.
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Figure 3-32 lllustrated here is the light path taken when a reference
transmission sphere is used to test a hyperboloidal surface.
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Figure 3-33 These screenshots from Zygo’s MetroPro software show a diamond-turned
telescope mirror on the top (MetroPro 9) and a crystalline CO, laser optic on the bottom
(MetroPro X). The raw (wrapped) fringe measurements can be seen in the lower right
portions of both images.
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Figure 3-34 This screenshot from 4D’s 4Sight software shows an unwrapped
interferogram and the wavefront metrics for this measurement. In fact, the raw (wrapped)
fringe measurement can be seen in the smaller image on the left side of the screenshot.
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Figure 3-35 The bold lines represent the position of a mirror in a
Michelson interferometer before and after it is tilted by distance Ad to angle a.
CA is the clear aperture of the beam on the tilted mirror.
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Figure 3-36 The spots formed by an optical system with spherical aberration
(left) that is compensated by defocus (right).



Figures 3-37 As the astigmatic optical system is defocused from the tangential
(left) to the sagqital (right) focal line, the circle of least confusion can be
observed.
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Figure 3-38 This interferogram is indicative of a three-point mounting
aberration.



