Math for Laser and Optics Technicians

Trigonometry

Pythagorean Theorem

Photonics Technicians need to be able to recognize when the Pythagorean formula needs to be used to solve a particular problem.

US astronauts placed a retroreflector panel of dimensions one meter by one meter on the surface of the moon. On the earth, a team of scientists pointed an Nd :YAG laser of beam divergence $\theta=1.35$ milliradians at the panel. Take the distance from the laser on the earth to

Key Concepts

A right triangle is a

 triangle that contains a right angle.Right angle (90 degrees)
The side opposite the right angle is the hypotenuse.
The legs of the triangle form the right angle.

Question

1. What is the diameter of the circular spot of the Nd:YAG laser beam that strikes the panel on the moon?

Solution to Trigonometry Question

```
Point A is the origin of the laser on the earth.
Segment BD is the diameter (d) of the laser spot
|}\mathrm{ when it strikes the moon.
```


From the right triangle ACB,

$$
\begin{aligned}
& \tan \frac{\theta}{2}=\frac{B C}{A C} \\
& \tan \frac{\theta}{2}=\frac{\frac{d}{2}}{4 \times 10^{8} \mathrm{~m}}
\end{aligned}
$$

$$
\therefore \quad \frac{d}{2}=\left(4 \times 10^{8} \mathrm{~m}\right)\left(\tan \frac{1.35 \times 10^{-3} \mathrm{rad}}{2}\right) \text { (With the calculator set to radians, use the tan } \begin{aligned}
& \text { key to evaluate.) }
\end{aligned}
$$

$$
\frac{d}{2}=\left(4 \times 10^{8} \mathrm{~m}\right)\left(6.75 \times 10^{-4} \mathrm{rad}\right)
$$

$$
\frac{d}{2}=2.7 \times 10^{5} \mathrm{~m}
$$

