Math for Laser and Optics Technicians

Algebra Equations

Algebra

Variables and Constants

Photonics technicians need to work with many different algebraic expressions that involve variables and constants, simplifying them, solving for a desired variable, and substituting known values for given quantities.

EXAMPLE

You are measuring the characteristics of an argon-ion laser with a cavity length (distance between mirrors) of 50 cm . The gain medium fills the space between the same two mirrors. The reflectivity if the HR (high-reflectivity mirror) is 0.998 . The reflectivity of the output mirror is 0.9575 . You determine that the round trip gain (loop gain) is 0.969 for a round trip cavity loss of 8.0%. You want to calculate the amplifier gain GA of the laser with the following equation:

$$
G_{L}=R_{1} R_{2} G_{A}^{2}(1-\alpha)
$$

where $G_{L} \quad$ Loop gain
$\mathrm{R}_{1} \quad$ Reflectivity of HR mirror
$\mathrm{R}_{2} \quad$ Reflectivity of output mirror
$\mathrm{G}_{\mathrm{A}} \quad$ Amplifier gain
a Round trip cavity loss

Helpful Reminder
 \square

Order of operations

1. Parentheses-Evaluate all operations inside parentheses and brackets (grouping symbols).
2. Exponents-Evaluate all exponents and powers.
3. Multiplication and DivisionMultiply and divide from left to right.
4. Addition and Subtraction—Add and subtract left to right.

Please Excuse My Dear Aunt Sally

Question

What do you find for the amplifier gain, G_{A} ?

Solution to Algebra Question

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{L}}=\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{G}_{\mathrm{A}}^{2}(1-\alpha) \\
& \left.\frac{\mathrm{G}_{\mathrm{L}}}{\mathrm{R}_{1} R_{2}(1-\alpha)}=\mathrm{G}_{\mathrm{A}}^{2} \quad \text { (Divide each side by } \mathrm{R}_{1} \mathrm{R}_{2}(1-\alpha) \cdot\right) \\
& \sqrt{\frac{\mathrm{G}_{\mathrm{L}}}{\mathrm{R}_{1} R_{2}(1-\alpha)}}=\mathrm{G}_{\mathrm{A}} \\
& \mathrm{G}_{\mathrm{A}}=\sqrt{\frac{0.969}{(0.969)(0.9575)(1-.08)}} \\
& \mathrm{G}_{\mathrm{A}}=\sqrt{1.1022}
\end{aligned}
$$

