Math for Laser and Optics Technicians

Algebra Equations Variables and Constants

Photonics technicians need to work with many different algebraic expressions that involve variables and constants, simplifying them, solving for a desired variable, and substituting known values for given quantities.

EXAMPLE

You are measuring the characteristics of an argon-ion laser with a cavity length (distance between mirrors) of 50 cm. The gain medium fills the space between the same two mirrors. The reflectivity if the HR (high-reflectivity mirror) is 0.998. The reflectivity of the output mirror is 0.9575. You determine that the round trip gain (loop gain) is 0.969 for a round trip cavity loss of 8.0%. You want to calculate the amplifier gain GA of the laser with the following equation:

$$G_{L} = R_{1}R_{2}G_{A}^{2}(1-\alpha)$$

where G_L Loop gain

- R₁ Reflectivity of HR mirror
- R₂ Reflectivity of output mirror
- G_A Amplifier gain
- α Round trip cavity loss

Question

What do you find for the amplifier gain, G_A ?

Algebra

Helpful Reminder

Order of operations

- Parentheses—Evaluate all operations inside parentheses and brackets (grouping symbols).
- 2. Exponents—Evaluate all exponents and powers.
- Multiplication and Division— Multiply and divide from left to right.
- Addition and Subtraction—Add and subtract left to right.

Please Excuse My Dear Aunt Sally

Solution to Algebra Question

