
Funded, in part by a grant from the

National Science Foundation

DUE 1003542

Field Programmable Gate Array

(FPGA)

Curriculum update

with Industry

Hosted by MATEC NetWorks

Chat

Raise
hand/smile/clap

Poll

Whiteboard

Chat Box

Type Comment Here

Chat Box

In the Chat Box,
please type the name of
your school or organization,
your location,
and how many people are
attending with you today.

Participant’s Box

 Allows you to non-verbally respond
to the presenter’s comments.

Participant’s Box

Smile

Raise Hand

Clap

Participant’s Box

 Let the presenter know if you like
what they say with a smile or clap.
Raise a hand if you have a question
– and then type it into the chat box.

Participant’s Box

Poll

 This webinar will have a Poll. Please answer:
I heard about this webinar through:

A. @matec

B. Email from ETD list serv

C. Email from HTWI

D. Friend or colleague

E. Other (please type where in chat box)

Click A-E to take the Poll

eSyst Webinar Presenters

Bassam Matar
Engineering Faculty and

Program Coordinator at

Chandler/Gilbert C.C.

Ui Luu
Electronics Faculty

Glendale C.C.

Field Programmable Gate Array (FPGAs)

Curriculum Validation with Industry Agenda

• Overview of the existing course offerings at
MCCCD.

• Overview of the externship with local industry

• Curriculum Update

• Xilinx Workshop

• Summer 2011 Workshop

• Survey and Final Questions from Participants

HTWI Project Team Members

Rick Hansen– Principal Investigator

Lizette Acosta - Coordinator Marketing &

 Academic Advisement

HTWI Project Overview

Faculty work side by side with industry to

design, develop and deliver this curriculum.

1) Research industry requirements and provide

students with a relevant, rigorous and

interdisciplinary course of study

HTWI Project Overview (cont.)

2) Reform curriculum and delivery to meet

industry requirements and provide students

with a relevant, rigorous and interdisciplinary

course of study

HTWI Project Overview (cont.)

3) Redefine Maricopa Colleges’ outreach and

retention strategies to attract more students

into the high-tech manufacturing fields to

meet future employment demands

HTWI Project Overview (cont.)

Electronics and Engineering Courses

– Digital Design Fundamentals (CSC/EEE 120)

– Introduction to Digital Logic (ELT 131)

– Microprocessor Applications inc. Microcontrollers

(CSC/EEE 230 or ELT 241

Electronics and Engineering Courses

Our existing courses have been focused on

Transistor-Transistor-Logic (TTL).

As a result of an externship in the Summer of

2009 we started implementing Field

Programmable Gate Array (FPGA) using

Schematics captures.

Externship with Local Industry

 In phase 1 of this project, we consulted with

Honeywell & General Dynamics on FPGAs in

industrial use

 Our initial findings: Very (High Speed Integrated

Circuits) Hardware Description Language

(VHDL)

 The growing trend in Digital Design is to adapt

Verilog as a new design tool.

After review we concluded the existing

digital course curriculum requires

– more coverage in VHDL

– less with Schematic Capture

Xilinx software works better with

VHDL programming than

Schematic Capture.

Externship with Local Industry (cont.)

Action Plan

This gap analysis prompts us to:

1. Attend FPGA/VHDL workshop sponsored

by Xilinx.
– If future externship opportunity exists, we will work with our

industrial partner to develop further Verilog updates.

2. Update our Digital Design curriculum to

increase coverage in VHDL.

General Lecture Recommendation

• Increased coverage of PLDs.

• Basic programming techniques in VHDL, Verilog
or an equivalent language should be
introduced.

 Rationale: A large percentage of new digital designs use a
PLD and students must be familiar with the basic types,
inputs, outputs, specifications, and architectures.
Students must know how to access inputs and outputs
and assess functionality.

The following subjects should be added to a
Digital course or more detailed coverage should
be included:

• Less breadboarding with discrete TTL or CMOS logic.

• Add significant PLD coverage that can be programmed
as well as including an Altera or Xilinx student demo
board with
• prebuilt I/O devices (switches, LEDs, LDC display, etc)

• multiple common interfaces

• ex: FPGA Spartan 3E, Nexys2 FPGA Board

• Add activities that allow students to practice test and
measurement techniques and troubleshooting. Add a
logic analyzer to the lab as budget permits.

General Lab Recommendation

• Use the existing textbook but edit the content to

avoid or de-emphasize the topics discussed

previously and to enhance the suggested topics.

• Search for supplementary material on the Internet

and other sources to cover topics not adequately

covered in the textbooks.

• Change to a textbook that incorporates the most

recent techniques
• ex: PLDs and microcontrollers.

General Textbook Recommendation

Sample reference book:

Digital Fundamentals with

VHDL by Floyd

http://wps.prenhall.com/chet_floyd_digitalvhdl_1/

Questions?

• Arithmetic Logic Unit (ALU) Lecture with

VHDL

By Bassam Matar

• Security System Design Lab with VHDL

By Ui Luu

Sample

Design and Build an ALU with

Schematic Capture and VHDL

Arithmetic Logic Unit (ALU)

• Let’s talk about Arithmetic and Logic Unit’s
(ALU’s.)

• A microprocessor is made up of many
components:

– Central Processing Unit - Performs the data
manipulation tasks of the computer and sequences
each step in these tasks.

• Arithmetic and Logic Unit (ALU) - is the part of the
CPU which does the arithmetic (+,-,*,etc.) and the
logical operations (AND, OR, NOT etc.).

ALU’s

ACC

CPU

EN

Memory Cell

Select Lines

Read/Write

Control Bus

ACC to

Data Bus

Load

ACC

ALU

Control

Inputs

ALU

B

A

Legend

A, B ALU Inputs

ACC Accumulator

ALU Arithmetic and Logic Unit

MAR Memory Address Register

CPU Central Processing Unit

FSM Finite State Machine

IR Instruction Register

PC Program Counter

EN Enable

Control Signal

Bus

+ Devices with Reset &

Clock Inputs

Buffer

EN

External

Memory

EN2

EN1

16

Address

Decoder

4

4

4

Use PC M

U

X

PC
+

MAR
+ 4

Memory

Address

Address

Bus

4

Load IR

Control

Unit

(FSM)

IR

+

+

Load MAR

4

4
Data Bus

4

4

Data Bus

EN

EN

4 4

2

Data Bus

+

EN

Synchronized

Mealy FSM
+

ALU’s

Each ALU has a different design. Lets look at

the one you’re building in simulation lab 3.

You already took the first step in the ALU

design. In Sim Lab 1 you built the circuit

that does the two’s complement operation.
INC_4

A2
A3 Y3

INC

Y2
Y1
Y0A0

A1

CRY

+ 5 V

A3

A2

A1

A0

Y3
Y2
Y1
Y0

CRY

ALU’s

INC_4

A2
A3 Y3

INC

Y2
Y1
Y0A0

A1

CRY

Y3
Y2
Y1
Y0

CRY

A3

A2

A1

A0

/~Pass

NOT/~NEG NOT/NEG

A2
A3 Y3

/~Pass

Y2
Y1
Y0A0

A1

NOT/~NEG

CRY

NOT/~NEG/~Pass FUNCTION

Pass-Through A

Two's Complement

Pass-Through A

One's Complement

0

0

1

1

0

1

0

1

ALU’s

AND/~Add Function

0 Add

1 AND

FA_4

A2
A3

Y3
Y2
Y1
Y0

A0
A1

Cin

B2
B3

B0
B1

Cout

A3
A2
A1
A0

B3
B2
B1
B0

Cin

B1

A1

B0

A0

B2

A2

B3

A3

AD3
AD2
AD1
AD0

Y3
Y2
Y1
Y0

Cout

AND/~ADD

B3
B2
B1
B0

B3
B2
B1
B0

A3
A2
A1
A0

A3
A2
A1
A0

AN3
AN2
AN1
AN0

AN3
AN2
AN1
AN0

AD3
AD2
AD1
AD0

MUX_4

A2
A3

Y3
Y2
Y1
Y0

A0
A1

A/~B

B2
B3

B0
B1

ALU’s

AND/ADD Circuit

w/ Pass-Through

FA_4

A2
A3

Y3
Y2
Y1
Y0

A0
A1

Cin

B2
B3

B0
B1

Cout

A3
A2
A1
A0

B3
B2
B1
B0

Cin

B1

A1

B0

A0

B2

A2

B3

A3

AD3
AD2
AD1
AD0

Y3
Y2
Y1
Y0

Cout

AND/~ADD

A3
A2
A1
A0

/~Pass

B3
B2
B1
B0

B3
B2
B1
B0

A3
A2
A1
A0

A3
A2
A1
A0 AD3

AD2
AD1
AD0

AN3
AN2
AN1
AN0

AN3
AN2
AN1
AN0

MUX_4

A2
A3

Y3
Y2
Y1
Y0

A0
A1

A/~B

B2
B3

B0
B1

MUX_4

A2
A3

Y3
Y2
Y1
Y0

A0
A1

A/~B

B2
B3

B0
B1

AND/ADD

A2
A3

Y3
Y2
Y1
Y0

A0
A1

AND/~ADD

B2
B3

B0
B1

CoutCin

/~Pass

AND/~Add/~Pass FUNCTION

Pass-Through A

Add

Pass-Through A

AND

0

0

1

1

0

1

0

1

ALU’s

ALU
TEAMS: Fill in the

function definition

table below for the

ALU.

A3
A2
A1
A0

B3
B2
B1
B0

Y3
Y2
Y1
Y0

Cin Cout

NOT/NEG

A2
A3 Y3

/~Pass

Y2
Y1
Y0A0

A1

NOT/~NEG

CRY

AND/ADD

A2
A3

Y3
Y2
Y1
Y0

A0
A1

AND/~ADD

B2
B3

B0
B1

CoutCin

/~Pass

/~Invert

Logic/~Arith

/~A_Only

Z3
Z2
Z1
Z0

ALU’s

A

ONLY' ARITH'/LOGIC INVERT FUNCTION

HEX

INPUT A

HEX

INPUT B

HEX

OUTPUT

0 0 0 PASS-THROUGH E D E

0 0 1 2's COMPLIMENT of A C E 4

0 1 0 PASS-THROUGH F 9 F

0 1 1 1's COMP of A F C 0

1 0 0 A plus B 2 5 7

1 0 1 (2's COMP A) plus B F A B

1 1 0 A AND B F 8 F

1 1 1 (1's COMP of A) AND B 2 5 D

A3
A2
A1
A0

B3
B2
B1
B0

Y3
Y2
Y1
Y0

Cin Cout

NOT/NEG

A2
A3 Y3

/~Pass

Y2
Y1
Y0A0

A1

NOT/~NEG

CRY

AND/ADD

A2
A3

Y3
Y2
Y1
Y0

A0
A1

AND/~ADD

B2
B3

B0
B1

CoutCin

/~Pass

/~Invert

Logic/~Arith

/~A_Only

Z3
Z2
Z1
Z0

Top Level VHDL Programming of ALU’s

A

ONLY' ARITH'/LOGIC INVERT FUNCTION

HEX

INPUT A

HEX

INPUT B

HEX

OUTPUT

0 0 0 PASS-THROUGH E D E

0 0 1 2's COMPLIMENT of A C E 4

0 1 0 PASS-THROUGH F 9 F

0 1 1 1's COMP of A F C 0

1 0 0 A plus B 2 5 7

1 0 1 (2's COMP A) plus B F A B

1 1 0 A AND B F 8 F

1 1 1 (1's COMP of A) AND B 2 5 D

NEG_NOT VHDL Component Programming

of ALU’s

NOT/NEG

A2
A3 Y3

/~Pass

Y2
Y1
Y0A0

A1

NOT/~NEG

CRY

NOT/~NEG/~Pass FUNCTION

Pass-Through A

Two's Complement

Pass-Through A

One's Complement

0

0

1

1

0

1

0

1

AND/ADD VHDL Component Programming

of ALU’s

AND/ADD

A2
A3

Y3
Y2
Y1
Y0

A0
A1

AND/~ADD

B2
B3

B0
B1

CoutCin

/~Pass

AND/~Add/~Pass FUNCTION

Pass-Through A

Add

Pass-Through A

AND

0

0

1

1

0

1

0

1

• We need the function definition tables

because after the ALU is put in a “box”, we

need to know how to use it and connect it.
ALU

A2
A3

Y3
Y2
Y1
Y0

A0
A1

Cin

B2
B3

B0
B1

Cout

/~Invert

Logic/~Arith

/~A_Only

ALU’s

• Arithmetic Logic Unit (ALU) Lecture with

VHDL

By Bassam Matar

• Security System Design Lab with VHDL

By Ui Luu

Sample

Security State Machine

Ui Luu

Glendale Community College

Security System I/O

SECURITY

ARM

FRONT_DOOR

REAR_DOOR

WINDOW

SIREN

Figure 1. Security System I/O

ARM INDICATOR

FRONT_DOOR INDICATOR

REAR_DOOR INDICATOR

WINDOW INDICATOR

Security System State Diagram

DISARMED

SIREN = „0‟

ARMED

SIREN = „0‟

WAIT_DELAY (7 s)

SIREN = „0‟

ALARM

SIREN = „1‟

ARM = „1‟

ARM = „0‟

SENSORS /= “000”

ARM = „0‟

COUNT_DONE = „1‟

ARM = „0‟

ARM = „0‟

Figure 2. SECURITY SYSTEM STATE DIAGRAM

Objectives & Learning Outcomes

After completing this module, you will be able to:

Create a top-level HDL structure

Write VHDL code to describe a synchronous state machine diagram

Utilize LED_DRIVER module developed in previous lab for timer display

Create / use a constraint file for pin-out assignments

Download to the SPARTAN 3E demo board for in-circuit verification.

Security System Block Diagram

Creating the Top-Level Module (SECURITY.vhd)

-- Module Name: SECURITY.vhd

-- Project Name: Security State Machine

-- Target Devices: Xilinx Spartan 3E / xc3s500e

-- Tool versions: Win7 / Xilinx ISE 12.1

-- Description: Sample solution for Security State Machine

-- * This is the top level module that pulls together all sub modules

-- * use LED Drivers developed in previous lab for Timer display

-- SECURITY.vhd (this module)

-- * CLK_DIV.vhd (Clock Divider)

-- * ADDR_CNTRwCAT.vhd (Address Counter with CAT control)

-- * MEM5.vhd (Memory for 2 digits 7-segment LEDs Display

-- * FSM.vhd (State Machine)

-- * INDICATORS.vhd (Onboard LED Indicators)

-- * SECURITY.ucf (I/O Assignments)

Create Entity SECURITY

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity SECURITY is

port (

 CLK : in std_logic;

 ARM : in std_logic;

 FRONT_DOOR: in std_logic;

 REAR_DOOR: in std_logic;

 WINDOW: in std_logic;

 SIREN : out std_logic;

 ARM_IND : out std_logic;

 FRONT_DOOR_IND: out std_logic;

 REAR_DOOR_IND: out std_logic;

 WINDOW_IND: out std_logic;

 LEDS : out STD_LOGIC_VECTOR (7 downto 0);

 CAT_CONTROL :out STD_LOGIC

);

end entity SECURITY;

Architecture & Components

architecture RTL of SECURITY is

component FSM

 Port (CLK : in STD_LOGIC;

 CLK_DIV:in STD_LOGIC;

 ARM : in STD_LOGIC;

 FRONT_DOOR : in STD_LOGIC;

 REAR_DOOR : in STD_LOGIC;

 WINDOW : in STD_LOGIC;

 RUN_TIMER:out STD_LOGIC;

 SIREN : out STD_LOGIC);

end component;

Components CLK_DIV & MEM5

component CLK_DIV

 Port (CLK: in STD_LOGIC;

 CLK_DIV: out STD_LOGIC);

end component;

component MEM5

 Port (ADDR: in std_logic_vector (4 downto 0);

 LED_OUT: out STD_LOGIC_VECTOR(7 downto 0));

end component;

Component: ADDR_CNTRwCAT

component ADDR_CNTRwCAT

 port (CLK: in STD_LOGIC;

 RUN_TIMER: in STD_LOGIC;

 CE: in std_logic;

 ADDR: out STD_LOGIC_VECTOR(4 downto 0);

 CAT_CONTROL: out std_logic

);

end component;

Component: INDICATORS

component INDICATORS

 Port (ARM : in STD_LOGIC;

 FRONT_DOOR : in STD_LOGIC;

 REAR_DOOR : in STD_LOGIC;

 WINDOW : in STD_LOGIC;

 ARM_SIG : out STD_LOGIC;

 FRONT_DOOR_SIG : out STD_LOGIC;

 REAR_DOOR_SIG : out STD_LOGIC;

 WINDOW_SIG : out STD_LOGIC);

end component;

Signal provides interconnect between Components

signal CE_SIG: std_logic;

signal ADDR_BUS: std_logic_vector(4 downto 0);

signal RUN_SIG: std_logic;

See System Block Diagram (next slide)

Signal provides interconnect between Components

CE_SIG

ADDR_BUS

RUN_SIG

Create Instance of Component INDICATORS

component INDICATORS

 Port (ARM : in STD_LOGIC;

 FRONT_DOOR : in STD_LOGIC;

 REAR_DOOR : in STD_LOGIC;

 WINDOW : in STD_LOGIC;

 ARM_SIG : out STD_LOGIC;

 FRONT_DOOR_SIG : out STD_LOGIC;

 REAR_DOOR_SIG : out STD_LOGIC;

 WINDOW_SIG : out STD_LOGIC);

end component;

INDICATORS_INST_0: INDICATORS port map(

 ARM => ARM,

 FRONT_DOOR => FRONT_DOOR,

 REAR_DOOR => REAR_DOOR ,

 WINDOW => WINDOW,

 ARM_SIG => ARM_IND,

 FRONT_DOOR_SIG => FRONT_DOOR_IND,

 REAR_DOOR_SIG => REAR_DOOR_IND,

 WINDOW_SIG => WINDOW_IND

);

-- Left hand side includes I/Os at the component ports

-- Right hand side includes signals that the ports are attached to connect

to other components

Create Instances of Components:

CLK_DIV, ADDR_CNTRwCAT, MEM5, FSM

CLK_DIV_INST_0: CLK_DIV port map (CLK=>CLK, CLK_DIV=>CE_SIG);

ADDR_CNTRwCAT_INST_0: ADDR_CNTRwCAT port map (

 CLK=>CLK,

 RUN_TIMER => RUN_SIG,

 CE=>CE_SIG,

 ADDR => ADDR_BUS,

 CAT_CONTROL=>CAT_CONTROL);

MEM5_INST_0: MEM5 port map (ADDR=> ADDR_BUS, LED_OUT=>LEDS);

FSM_INST_0: FSM port map (

 CLK => CLK,

 CLK_DIV => CE_SIG,

 ARM => ARM,

 FRONT_DOOR => FRONT_DOOR,

 REAR_DOOR => REAR_DOOR,

 WINDOW => WINDOW,

 RUN_TIMER => RUN_SIG,

 SIREN => SIREN);

SECURITY Architecture Syntax Summary

architecture RTL of SECURITY is

component FSM …

component CLK_DIV …

component MEM5 …

component ADDR_CNTRwCAT …

component INDICATORS …

signal CE_SIG: std_logic;

signal ADDR_BUS: std_logic_vector(4 downto 0);

signal RUN_SIG: std_logic;

Begin

INDICATORS_INST_0: …

CLK_DIV_INST_0: …

ADDR_CNTRwCAT_INST_0: …

MEM5_INST_0: …

FSM_INST_0: …

end architecture RTL;

Hands-on (30 minutes)

Step 1 / Lab procedure
Creating the Top-Level Module SECURITY.vhd

using Xilinx ISE

(see sample screen shot)

Finite State Machine Module: FSM.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity FSM is

 Port (CLK : in STD_LOGIC;

 CLK_DIV:in STD_LOGIC;

 ARM : in STD_LOGIC;

 FRONT_DOOR : in STD_LOGIC;

 REAR_DOOR : in STD_LOGIC;

 WINDOW : in STD_LOGIC;

 RUN_TIMER:out STD_LOGIC;

 SIREN : out STD_LOGIC);

end FSM;

architecture Behavioral of FSM is

type SECURITY_STATE is (ARMED,DISARMED,WAIT_DELAY, ALARM);

signal CURR_STATE,NEXT_STATE: SECURITY_STATE;

signal START_COUNT,COUNT_DONE: std_logic;

signal SENSORS:std_logic_vector (2 downto 0); --combine inputs

signal TIMER_CNTR: std_logic_vector (2 downto 0) := (others => '0');

FSM / SYNC process

Begin

SENSORS <= FRONT_DOOR & REAR_DOOR & WINDOW; -- &: concatenate

SYNC: process (CLK,ARM)

begin

 if ARM = '0' then

 CURR_STATE <= DISARMED;

 elsif rising_edge (CLK) then

 CURR_STATE <= NEXT_STATE;

 end if;

end process SYNC;

STATE_MACHINE: process (CURR_STATE,SENSORS,ARM,COUNT_DONE)

begin

 START_COUNT <= '0'; -- establish default

 case (CURR_STATE) is

 when DISARMED =>

 if ARM = '1' then

 NEXT_STATE <= ARMED;

 else NEXT_STATE <= DISARMED;

 end if;

 -- Output:

 SIREN <= '0';

 RUN_TIMER <= '0';

 when ARMED =>

 if (SENSORS /= "000") then

 NEXT_STATE <= WAIT_DELAY;

 else NEXT_STATE <= ARMED;

 end if;

 -- Output:

 SIREN <= '0';

 RUN_TIMER <= '0';

 when WAIT_DELAY =>

 START_COUNT <= '1';

 if (COUNT_DONE = '1') then

 NEXT_STATE <= ALARM;

 elsif (ARM ='0') then

 NEXT_STATE <= DISARMED;

 else NEXT_STATE <= WAIT_DELAY;

 end if;

 -- Output:

 SIREN <= '0';

 RUN_TIMER <= '1';

 when ALARM =>

 if (ARM = '0') then

 NEXT_STATE <= DISARMED;

 else NEXT_STATE <= ALARM;

 end if;

 -- Output:

 SIREN <= '1';

 RUN_TIMER <= '0';

 end case;

end process STATE_MACHINE;

DELAY_TIMER process

DELAY_TIMER: process(CLK_DIV,CURR_STATE,START_COUNT,TIMER_CNTR)

begin

 COUNT_DONE <= '0'; -- default value

 if (rising_edge (CLK_DIV) and (START_COUNT = '1')) then

 TIMER_CNTR <= TIMER_CNTR + 1;

 end if; --rising_edge (CLK_DIV)

 if (CURR_STATE/=WAIT_DELAY) then -- /= : NOT equal

 TIMER_CNTR <= "000";

 end if;

 if (TIMER_CNTR = "111") then

 COUNT_DONE <= '1';

 end if;

end process DELAY_TIMER;

FSM.vhd Syntax Summary

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity FSM is

 Port (…);

end FSM;

architecture Behavioral of FSM is

type …

signal …

Begin

SYNC: process …

STATE_MACHINE: process …

DELAY_TIMER: process …

end Behavioral;

Hands-on (30 minutes)

Step 2 / Lab Procedure

Create FSM.vhd using Xilinx ISE

(see sample screen shot)

Hands-on (30 minutes)

Step 3 / Lab Procedure

Implementing and Downloading the Design to Spartan 3E

Hands-on (15 minutes)

Step 4 / Lab Procedure

System Verification

Hands-on (Bonus Round)

Step 5: (Bonus Round)

If time is available, modify the source files to reflect the following new system
requirements:

• The REAR_DOOR sensor is replaced by FIRE sensor.

• A new output SPRINKLER is created to control a sprinkler system.

In addition to the previous requirements, when FIRE is detected, Siren and
Sprinkler system are activated immediately without time delay.

Resource for Instructors
(Resources will be available for Summer 2010 FPGA Workshop)

 SECURITY.vhd (Top-Level module that ties the following sub modules together)

 FSM.vhd (Security State Machine)

 INDICATORS.vhd (Spartan 3E Onboard LED Indicators)

 CLK_DIV.vhd (Divide system clock from 50 MHz to 1.49 Hz for timer display)

 ADDR_CNTRwCAT.vhd (Address Counter with scan signal for 7-segment LEDs)

 MEM5.vhd (Memory for 2-digit 7-segment LED display)

SECURITY.ucf (I/O Assignments for Spartan 3E demo board)

Contrast TTL vs VHDL Experiment

TTL VHDL/ISE Project Navigator

Method

• Create State Excitation & Transition Table

• Karnaugh Map for simplification

• Create schematics from design equations

Method

• Create Process using Hardware Description Language

• Using Synthesize tool

• Using Implement design tool

Implementation

• TTL breadboard

Implementation

• Download to target board using ISE Project Navigator

Time

• 8 hours (including trouble shooting for wiring

connections problem)

Time

• 2 hours

Complexity

• Limited (Karnaugh map gets complicated

after 4 variables)

Complexity

• open

Questions?

VHDL/FPGA Workshop

• Plan a workshop for Summer 2011.

• The workshop will be provided by NSF.

Each participant will receive stipend for

travel and lodging.

• If you are interested please email Bassam

Matar at:

b.matar@cgcmail.maricopa.edu

Questions?

Please complete this quick 1 minute survey to help

us become better and to let us know what webinars

you would like to see in the future.

Help us become better

http://www.questionpro.com/t/ABkVkZIOXa

Webinar Recordings

To access this recording, visit
www.matecnetworks.org,

Keyword Search:
“webinar HTWI FPGA”

HTWI Upcoming Webinars

Visit www.matecnetworks.org for more details about
these and other upcoming webinars.

December 3: Supply Chain and Inventory Control:

Limiting Factors and the Technologies That Help Them

Work

NetWorks Upcoming Webinars

Visit www.matecnetworks.org for more details about
these and other upcoming webinars.

October 8: Innovative STEM Resources

November 12: Electronics Education Today

Funded, in part by a grant from the

National Science Foundation

DUE 1003542

Thank you for attending

Field Programmable Gate Array

(FPGA)

Curriculum update

with Industry

Hosted by MATEC NetWorks

