Welcome to MATEC NetWorks Webinar

Robotics Now!

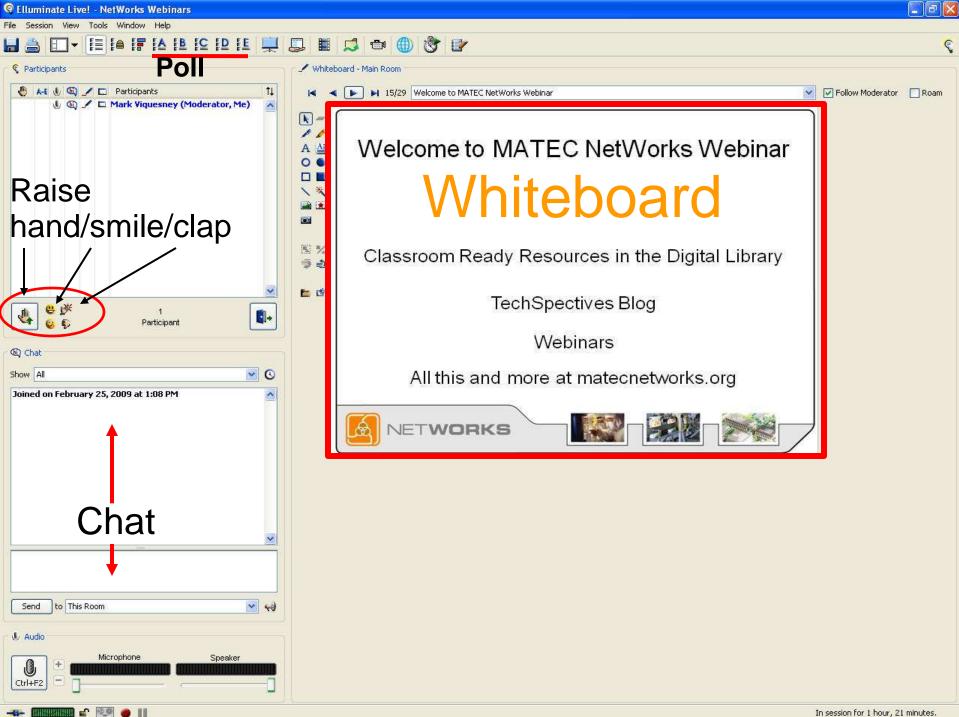
NetWorks is an NSF-funded ATE Resource Center supporting faculty in Semiconductor, Automated Manufacturing, and Electronics education

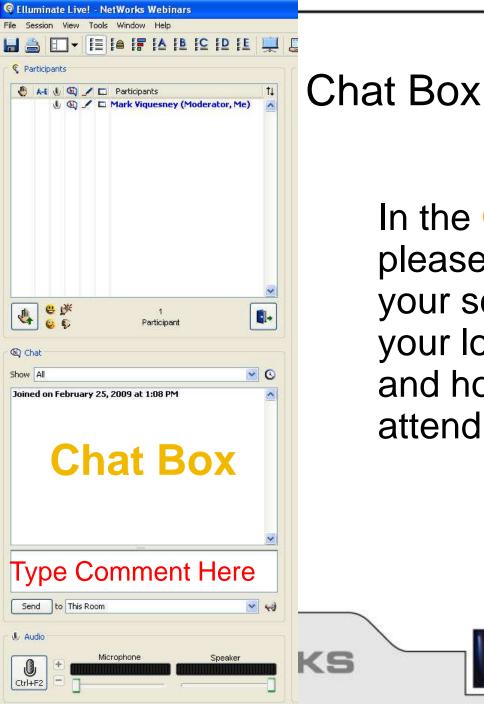
Classroom Ready Resources in the Digital Library

TechSpectives Blog

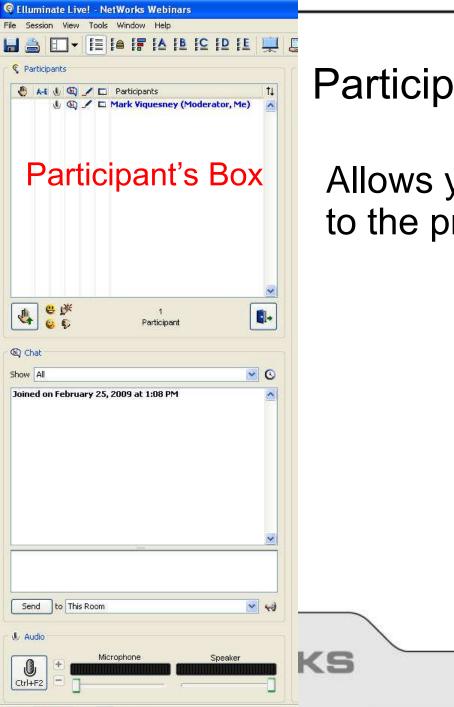
Webinars

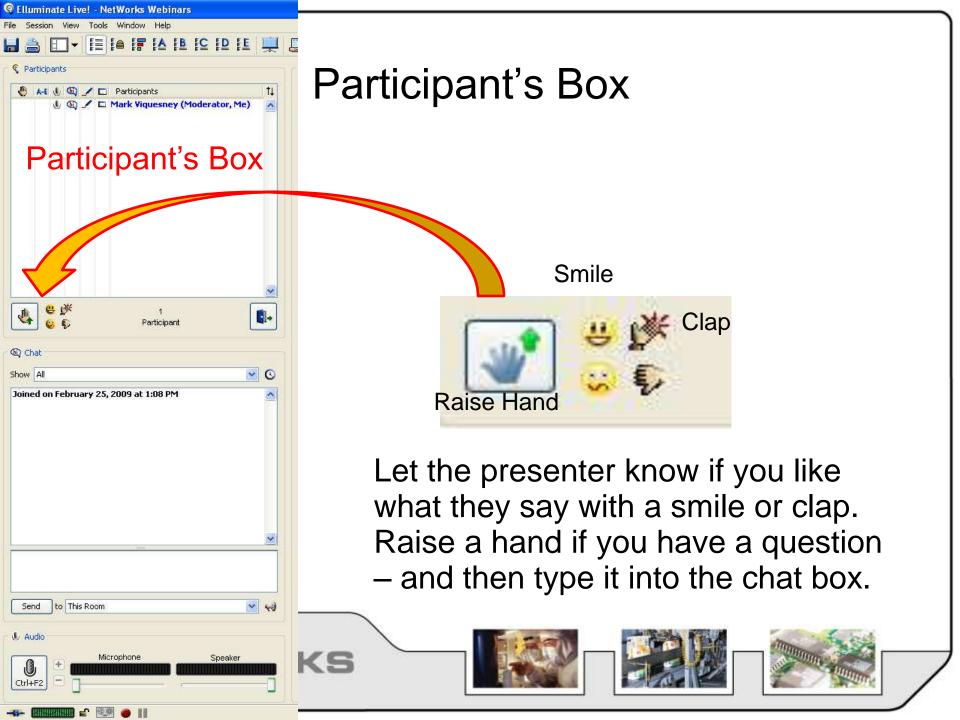
All this and more at *www.matecnetworks.org*


NetWorks is a part of MATEC, a member of the Center for Workforce Development in the Division of Academic and Student Affairs, at the Maricopa Community Colleges.



National Science Foundation


Funded, in part, by a grant from the National Science Foundation. DUE-0501626



In the Chat Box, please type the name of your school or organization, your location, and how many people are attending with you today.

Participant's Box

Allows you to non-verbally respond to the presenter's comments.

Click A-E to take the Poll

Poll

This webinar will have a Poll. Please answer: I heard about this webinar through:

A. @matec

Elluminate Live! - NetWorks Webinars

Tools

🖑 👫 🕕 🚳 🦯 🗖 Participants

Window

-

× 0

🖖 🚯 🖌 🗖 Mark Viquesney (Moderator, Me)

Participant

File

Session View

🖶 🎼

Joined on February 25, 2009 at 1:08 PM

(Chat

Show All

Participants

- B. Email from ETD list serv
- C. Email from NetWorks
- D. Friend or colleague
- E. Other (please type where in chat box)

NetWorks Webinar Presenters

VORKS

Dr. Charles T. Muse Executive Director for the National Robotics Training Center. Southeastern Institute for Manufacturing and Technology at Florence-Darlington Technical College

Bill Bennett Director, Training and Manufacturing for the National Robotics Training Center of Excellence

Mark Viquesney Host

 "...a robot in every home by 2020"- Oh Sang Rok, South Korea, Ministry of Information and Communication, Manager of Intelligent Service Robot Project, April 2006

- "...a robot in every home by 2020"- Oh Sang Rok, South Korea, Ministry of Information and Communication, Manager of Intelligent Service Robot Project, April 2006
- "1 million industrial robots throughout Japan by 2025"-2007 technology roadmap from the Japanese Trade Ministry

- "...a robot in every home by 2020"- Oh Sang Rok, South Korea, Ministry of Information and Communication, Manager of Intelligent Service Robot Project, April 2006
- "1 million industrial robots throughout Japan by 2025"-2007 technology roadmap from the Japanese Trade Ministry

 "Looking towards the year 2025, the Japanese government aims to become the world leader of service robots through the creation of autonomous robots."-Yumiko Myoken, Research and Development for Next Generation Service Robots in Japan, January 2009

 "there are similarities between the 1980s computer market and today's service robot market"- Bill Gates, Scientific American, January 2007

 "there are similarities between the 1980s computer market and today's service robot market"- Bill Gates, Scientific American, January 2007

 "By 2015 1/3 of US Army operational ground combat vehicles must be unmanned." - Floyd D Spence National Defense Authorization Act 2001

 "there are similarities between the 1980s computer market and today's service robot market"- Bill Gates, Scientific American, January 2007

- "By 2015 1/3 of US Army operational ground combat vehicles must be unmanned." - Floyd D Spence National Defense Authorization Act 2001
- Since 2004, the Robotic Systems Joint Project Office has deployed more than 6000 unmanned ground vehicles

 Robotics and robotic systems make up an emerging global industry in excess of \$100B dollars

- Robotics and robotic systems make up an emerging global industry in excess of \$100B dollars
- Service robots for personal use worldwide are projected to increase by 160% over the next three years.

 Recently, robots were used in the containment of the blown out oil well in the Gulf of Mexico off the Louisiana coast.

- Recently, robots were used in the containment of the blown out oil well in the Gulf of Mexico off the Louisiana coast.
- According to the International Federation of Robotics, the world's service and industrial robot population has reached 8.6 million

Big Dog Walking Robot

- Built by: Boston Dynamics
- Size of a small mule
- Weighs 240 pounds, carries 340 pounds
- Range 12 miles without refueling
- Walks, runs, climbs in mud, snow, ice, rocks
- Senses:
 - joint position
 - joint force
 - ground contact
- Using:
 - gyroscope
 - LIDAR
 - stereo vision system
 - And many other systems sensors

http://www.bostondynamics.com/robot_bigdog.html

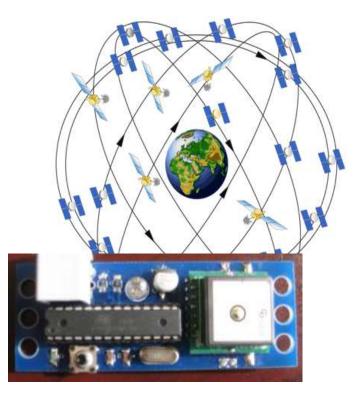
DARPA - Defense Advanced Research Projects Agency

- Unmanned cars operating autonomously in an urban environment
- Technologies used:
 - LIDAR
 - GPS
 - Radar
- Senses and responds to:
 - Other vehicles
 - Humans
 - Signs
 - Etc.

http://www.popsci.com/category/tags/darpa-urban-challenge

LIDAR

- System of:
 - Laser
 - Optics
 - Receiver
 - Can include GPS
- Applications:
 - Meteorology
 - Law enforcement
 - Robotics
 - Etc.



GPS – Global Positioning System

The real success today is the commercialization of the technology

Open Source Accelerometer Equipped Glove

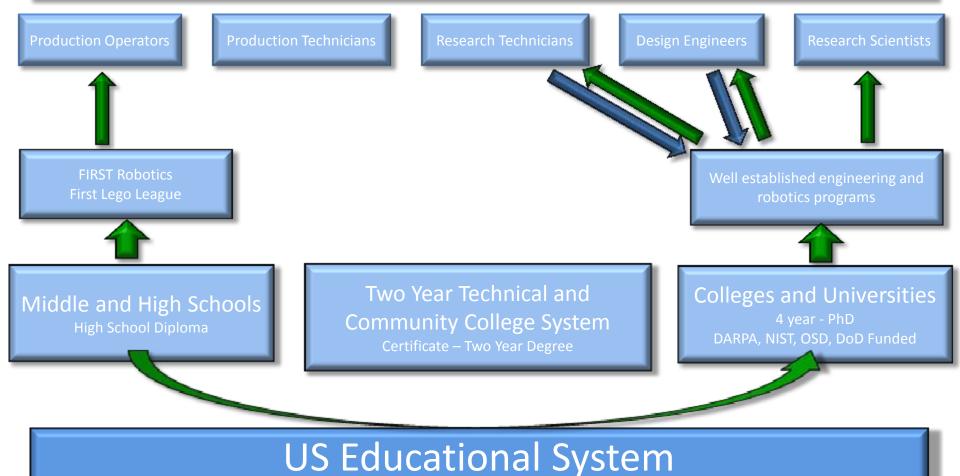
- A socially acceptable power glove for adults. Laced with accelerometers on each finger, the glove comes with an open source SDK that allows for it to control virtually anything- provided you can write the code for it.
- The glove can track hand movements in 3D space and relay that info back to the computer using the attached data board and USB cable.
- It's also possible to write drivers directly for the glove and use the raw data for more advanced applications.

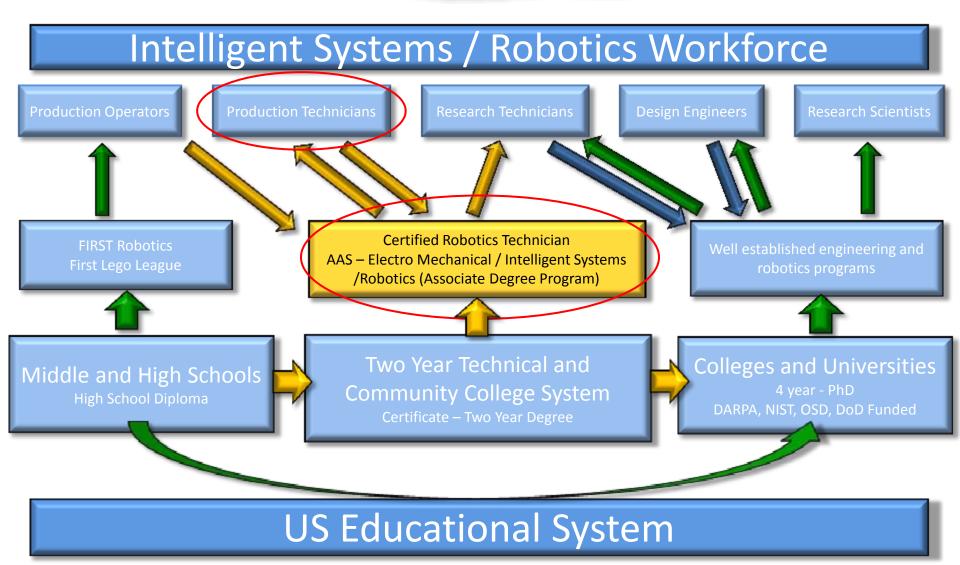
http://acceleglove.com/default.asp

http://www.popsci.com/gear-amp-gadgets/article/2009-07/open-source-accelerometer-enhanced-glove-allows-infinite-controlpossibilities

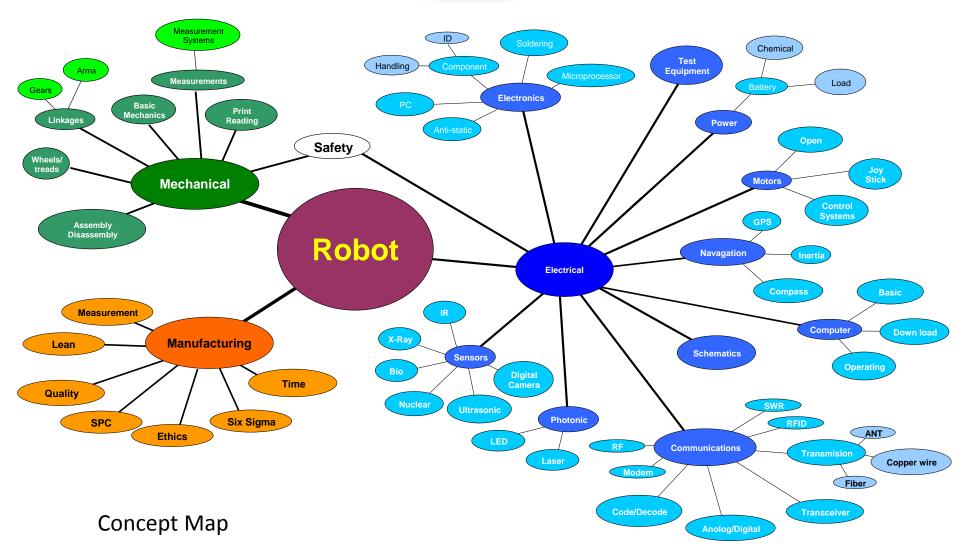
😨 Elluminate Live! - NetWorks Webinars	
File Session View Tools Window Help	
Participants	
At Cont At Cont At Cont At Cont At Cont At Cont Show All Cont Cont	
Joined on February 25, 2009 at 1:08 PM	Type them in your chat window
Audio Microphone Speaker Ctrl+F2	KS

The Importance of Robot Manufacturing


- Industrial Robotics: The majority are made and used overseas – The U.S. could fall further behind in terms of manufacturing capability
- UGVs: It is imperative that the U.S. maintain its competitive advantage for both defense and national security purposes


Intelligent Systems / Robotics Workforce

Development Process Robotics Technician Program


- Job profiling of industry technicians
- DACUM
- Curriculum development
- Writing of training modules
- Incorporate MSSC base manufacturing modules
- Editing, graphics, production
- Program review
- Develop online modality

DUTIES		Tasks							
		1	2	3	4	5	6	7	8
A	(A) Comply with Safety Procedures / Policies		(A2) Learn Safety Requirements for Work Area / Job	(A3) Obtain PPe / Safety Equipment	(A4) Obtain Necessary Certifications (NFPA 70E / Forklift)		(A6) Use Electrical Safety Equiment (e.g. Anti-Static Mats, Wrist Straps)	(A7) Use ESD Safe Tooling	(A8) Use Installed Safety Equipment (e.g. Eye Wash Stations)
В	(B) Assemble to Manufacture Specs	(B1) Receive Certification Training	(B2) Obtain Document Procedures Meeting Customer Requirements	(B3) Obtain Approved Workstation	(B4) Confirm Tool Calibration is Current	(B5) Obtain Required Tools	(B6) Draw Proper Parts from Supply		(B8) Maintain Parts Flow
с	(C) Operate Robotic System / Station	(C1) Check System Free of hazards	(C2) Perform Start-Up Safety Checks (e.g. E- Stops)	(C3) Power Up System	(C4) Install System Running Software	(C5) Make Mechanical Adjustments	(C6) Perfrom Functionally Test	(C7) Perform Vacuum Test	(C8) Perform Calibration
D	(D) Conduct On- The Job (OJT) Training		(D2) Obtain Demo Materials as Training Aids	(D3) Conduct Classroom Training	(D4) Share Information on New Technology	(D5) Perform OJT Sequence	(D6) Document Training Completion		(D8) Receive Feedback from Trainee
E	(E) Keep Skills Current	(E1) Maintain Re- Certification	(E2) Participate in "In House"	(E3) Conduct Cross Training	(E4) Rotate Company	(E5) Read Technical	(E6) Conduct Internet Searches (e.g. Course,	(E7) Apply Customer Feedback (from	(E8) Participate in Vendor Training
	Gurreni	Requirements	Training		Assignments		Research, Web Conferences)	Customer Needs & Visits)	
F	(F) Verify Quality Workmanship	(F1) Obtain Components	(F2) Establish Test Environment		(F4) Use Current Operational Procedure	('alibration Limite	(F6) Gather Required Witnesses	Pedigree of	(F8) Perform System Test Requirements
G	(G) Integrate Computer Numeric Control (CNC)	Application of Robot	(G2) Review Assembly Drawings / Blueprints		(G4) Create Software / Hardware Interface	System E-Stops	(G6) Test System Functionality	Robot (Initial	(G8) Demonstrate System Functionality
н	(H) Troubleshoot System / Component Failure	(H1) Obtain Defective Component	(H2) Acquire Proper Documentation	(H3) Obtain Required Tools	(H4) Understand Function of Component	(H5) Determine "Root Casue" of Failure	(H6) Recreate Problem / Failure	. ,	(H8) Operate Robotic System / Station
I	(I) Carryout Individual Projects	(I1) Establish Project Goal	(I2) Create Project Team	(I3) Set Project Schedule	(I4) Establish Project Budget		(l6) Track Project Progress		(I8) Demonstrate Results
J	(J) Perform Preventive Maintenance (PM)	(J1) Establish PM Schedule	(J2) Obtain PM Procedure	(J3) Obtain Required Tools	(J4) Obtain Required Supplies	(J5) Check "Shelf Life" of Component Parts	(J6) Perform PM		(J8) Perform Post PM Operational Check
К	(K) Perform Administratve Duties	(K1) Comply with Company Rules / Policies	(K2) Adhere to Work Schedule				(K6) Read Company Notices and Bulletins		(K8) Record Project Charge Time

Curriculum Chart

Торіс	Detail	Module #
Robotic Arm	Basic machines Center of gravity	MSSC OM12 MSSC OM13 MSSC OM14 MSSC OP1
Navigation device (GPS, inertia compass)	Overview Activity with GPS device Value/limitations of technologies	NRTC Mod 4
<u>Cameras</u>	Near infrared thermal infrared CCD Zoom Analog vs digital	NRTC Mod 3
<u>Sensors</u>	Infrared x-ray biological nuclear ultrasonic (overview options)	NRTC Mod 1 NRTC Mod 3
LED, light sources, lasers	Uses in robot for camera Alignment with mounting Distance sensing	NRTC Mod 3
Gears	ratio	MSSC OP3
Quality	Tolerances Measurement Lean manufacturing - six sigma (data charts) Non-conforming parts SPC Ethics	MSSC OQ3 MSSC OQ4 MSSC OQ7 MSSC OQ8 MSSC OQ9
Troubleshooting	Electrical systems Mechanical systems	MSSC OM1 MSSC OM2 MSSC OM5 MSSC OM6

Curriculum Chart

Торіс	Detail	Module #
Electronics	Printed circuit board component handling component identification basic electronics AC/DC diagnostic testing equipment anti static soldering de-soldering	MSSC OM1 MSSC OM2 MSSC OM3 MSSC OM4
<u>Control systems</u> (joystick)	Purpose; test; troubleshoot; control and feedback Closed vs open loop system	NRTC Mod 1
Operating systems (software)	Basic computer skills Microprocessors —basic function	NRTC Mod 1
Power Source (battery)	Chemistry safety Test under-load	NRTC Mod 1
<u>Motors and motor</u> <u>control systems</u> (electrical)	Microprocessors	MSSC OM15
Basic Mechanics and Mechanical systems		MSSC OP1 MSSC OP2
Communication systems	Transceiver RFID SWR (standing wave ratios) Analog vs digital RF Electrical signal over copper Pulses of light over fiber Modulation vs demodulation Coding & decoding Antennas	NRTC Mod 2
Mechanical linkages		MSSC OP2

Robotics Production Technician Certificate These Courses Can Be Offered Credit or Non-Credit

<u>Course</u>

Credit Hours

Tier One

Manufacturing Skill Standards Council - Certified Production Technician	
Principles of Safety (MSSC-CPT)	3
Principles of Maintenance (MSSC-CPT)	3
Principles of Quality & Continuing Improvement (MSSC-CPT)	3
Principles of Manufacturing Processes & Production (MSSC-CPT)	3
Subt	total 12
Tier Two	
National Robotics Training Center Certified Robotics Production Technician	
Manufacturing Workplace Skills	3
Computer Systems and Sensors (NRTC-CRPT)	3
Communications Systems (NRTC-CRPT)	1
Cameras, Photonics, and Light Sources (NRTC-CRPT)	1
Robot Mobility and Navigation (NRTC-CRPT)	1
Concepts of Lean Manufacturing (NRTC-CRPT)	<u>3</u>
Subt	total 12

Total Credit Hours 24

Associate of Arts Degree with a concentration in Robotics Production Technology

Credit Hours

General Requirements	
Communication	9
Humanities and/or Social Sciences	12
Mathematics	<u>6</u>
Subtotal	27
Concentration in Robotics Production Technology	
* Computer Systems, Sensors, Communication, Photonics, Navigation	
** Safety, Quality, Mfg. Processes, Maintenance, Lean Mfg. Subtotal	24
Other Requirements	
Humanities and/or Social Sciences and electives Subtotal	15
Minimum Credit Hours	66

Potential Virtual National Center

Certified Robotics Production Technician Assessment Process

- Stacks on the MSSC Certified Production Technician (CPT)
- National Robotics Training Center Certified Robotics Production Technician
 - Three assessments
 - CPT certification required

The NRTC - CRPT certification stacks on the MSSC - CPT certification

Certified Robotics Production Technician Program Marketing

- Industry Support
 - AUVSI
 - NAM-MI
 - NDIA
- Availability to Military Personnel
 - Council of College and Military Educators
 - Army, Air Force, Navy, Marine Corps, National Guard, Coast Guard ESO's
- Two Year College System
 - NSF HI-TEC
 - Community/Technical Colleges
 - Economic Clusters
 - Association of Career and Technical Educators

😨 Elluminate Live! - NetWorks Webinars	
File Session View Tools Window Help	
Participants	
At Cont At Cont At Cont At Cont At Cont At Cont Show All Cont Cont	
Joined on February 25, 2009 at 1:08 PM	Type them in your chat window
Audio Microphone Speaker Ctrl+F2	KS

How Can We Better Serve You?

Whether you are joining us live or watching the recorded version of this webinar, please take 1 minute to provide your feedback and suggestions.

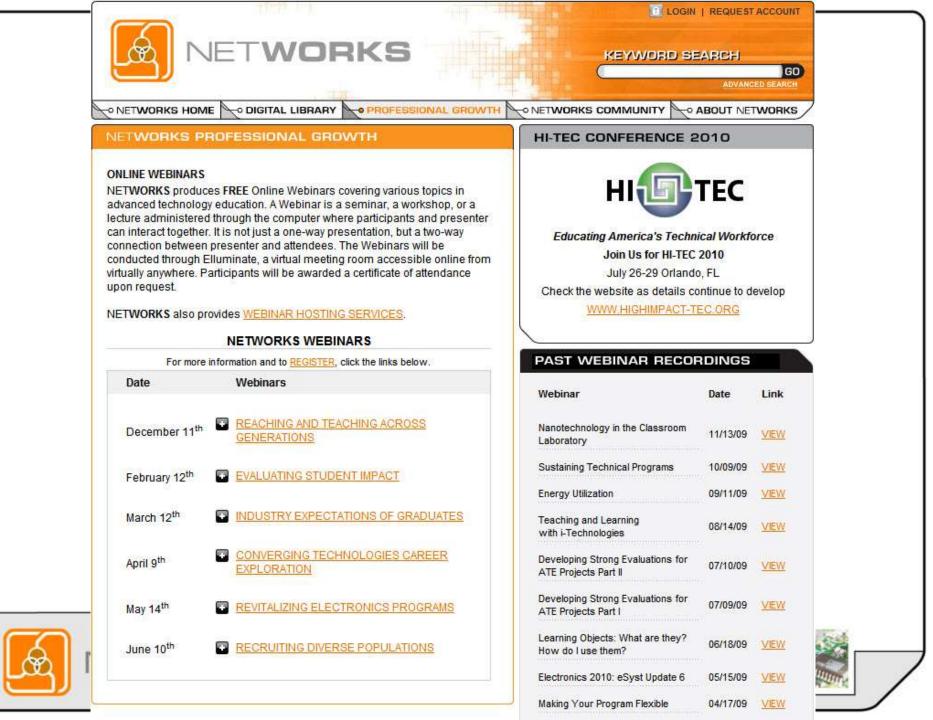
http://www.questionpro.com/t/ABkVkZIOXO

Join Us in San Francisco, CA July 25-28, 2011

Visit www.highimpact-tec.org as more details develop

Thank you for attending MATEC NetWorks Webinar Robotics Now!

Classroom Ready Resources in the Digital Library TechSpectives Blog Webinars


All this and more at www.matecnetworks.org

Webinar Recordings

To access this recording, visit *www.matecnetworks.org*, Keyword Search: "webinar robotics now"

NetWorks Upcoming Webinars

April 15: MS Drops Failures and Withdraws, Increasing Online Retention

May 13: Sustaining CC Technical Programs

Visit *www.matecnetworks.org* for more details about these and other upcoming webinars.

Certificate of Participation

If you attended the live version of this 1.5 hour webinar and would like a certificate of participation, please email Sally.clasen@domail.maricopa.edu

Thank you for attending

MATEC NetWorks Webinar

Robotics Now!

Classroom Ready Resources in the Digital Library TechSpectives Blog Webinars

All this and more at www.matecnetworks.org

