

The University of Texas at Austin

Harvard John A. Paulson **School of Engineering** and Applied Sciences

Multi-Responsive Nanogels for Biosensing, Drug Delivery, and **Regenerative Medicine**

John R. Clegg^{1,2}

[1] John A. Paulson School of Engineering and Applied Sciences, [2] Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA

Wyss 🗲 Institute for Biologically Inspired Engineering

This Webinar will be recorded and we will send you a link

Please use the chat window to ask questions

Complete our brief survey at the end, we want to hear from you

This Webinar Is Hosted By

SUPPORTING ADVANCED TECHNOLOGICAL EDUCATION

ATE Central acts as an information Hub for the National Science Foundation ATE Grantee Community

atecentral.net/webinars

This Webinar Is Brought To You By

Building College-University Partnerships for Nanotechnology Workforce Development

Introductions

Mike Lesiecki Host

Atilla Ozgur Cakmak Assistant Professor NACK Network

Postdoctoral Fellow in Biomedical Engineering at Harvard University

HARVARD John A. Paulson School of Engineering and Applied Sciences

Introduction

- The purpose of this webinar is to introduce you to *environmentally responsive hydrogels* with particular focus on *fabrication and application of nanoscale hydrogel networks, or nanogels.*
- We have shown that these nanogels can be fabricated by a number of methods. Here, we focus on one particular method, which uses *free radical co-polymerization of functional methacrylates, followed by orthogonal modification*.
- I will first provide *a high-level thermodynamic analysis of how crosslinked networks behave in a good solvent.* This fundamental understanding is critical in order to apply nanogels in a practical sense.
- Then, I will discuss in detail one application of nanogels *cancer precision medicine*.
- Finally, I will conclude with an overview of how similar nanogel systems are being applied within *biosensing, drug delivery, and regenerative medicine.*

Thermodynamics of Gels: Swelling and Stimulus Response

$$\Delta G_{total} = \Delta G_{elastic} + \Delta G_{mixing} + \Delta G_{ionic}$$

Koetting MC, Peters JT, Steichen SD, Peppas NA. Stimulus-responsive hydrogels: Theory, modern advances, and applications. Materials Science and Engineering: R: Reports. 2015 Jul 1;93:1-49.

Thermodynamic Response to Environment: Molecular Level

Clegg, J.R., Wagner, A.M., Shin, S.R., Hassan, S., Khademhosseini, A. and Peppas, N.A., 2019. Modular fabrication of intelligent material-tissue interfaces for bioinspired and biomimetic devices. *Progress in Materials Science*, p.100589.

Biologically Relevant Example: pH Responsive Hydrogels

Koetting MC, Peters JT, Steichen SD, Peppas NA. Stimulus-responsive hydrogels: Theory, modern advances, and applications. Materials Science and Engineering: R: Reports. 2015 Jul 1;93:1-49.

Fabrication and Responsiveness of Ionizable Nanogels

Clegg, J.R., Wagner, A.M., Shin, S.R., Hassan, S., Khademhosseini, A. and Peppas, N.A., 2019. Modular fabrication of intelligent material-tissue interfaces for bioinspired and biomimetic devices. *Progress in Materials Science*, p.100589.

A Brief Question Break

Synthesis of Intelligent Nanogels via Inverse Emulsion Polymerization

Zhong, Justin X., John R. Clegg, Eric W. Ander, and Nicholas A. Peppas. "Tunable poly (methacrylic acid-co-acrylamide) nanoparticles through inverse emulsion polymerization." *Journal of Biomedical Materials Research Part A* 106, no. 6 (2018): 1677-1686.

Tunability of Nanogel Diameter via Modulation of Emulsion Parameters

✓ Nanogel diameter is tunable through modulation of polymerization parameters

✓ Critical levels determined for successful nanogel formation

Zhong, Justin X., John R. Clegg, Eric W. Ander, and Nicholas A. Peppas. "Tunable poly (methacrylic acid-co-acrylamide) nanoparticles through inverse emulsion polymerization." *Journal of Biomedical Materials Research Part A* 106, no. 6 (2018): 1677-1686.

Response of Intelligent Nanogels to the pH Environment: Diameter and Surface Charge

Zeta Potential, Hydrodynamic Diameter

Tunability of the Magnitude of pH Response: Change the Network Structure

for Biologically Inspired Engineering

acid-co-acrylamide) nanoparticles through inverse emulsion polymerization." Journal of Biomedical Materials Research Part A 106, no. 6 (2018): 1677-1686.

Responsiveness and Cytocompatibility of P(AAm-co-MAA) Nanogels

Nanoparticle Concentration (mg/mL)

Percent Metabolic Activity 100-50 *** 5t10 5t10 0.05 control r 05 LYSIS ϧ

150-

Nanoparticle Concentration (mg/mL)

Macrophages

- Uniform, Spherical, Stable in Solution \checkmark
- Reversible pH-responsive behavior \checkmark
- Biocompatible \checkmark

Zhong, Justin X., John R. Clegg, Eric W. Ander, and Nicholas A. Peppas. "Tunable poly (methacrylic acid-co-acrylamide) nanoparticles through inverse emulsion polymerization." Journal of Biomedical Materials Research Part A 106, no. 6 (2018): 1677-1686.

P(AAm-co-MAA) Nanogel Uptake by Murine Macrophages

K for Biologically Inspired Engineering

Wyss 🗲 Institute

Zhong, Justin X., John R. Clegg, Eric W. Ander, and Nicholas A. Peppas. "Tunable poly (methacrylic acid-co-acrylamide) nanoparticles through inverse emulsion polymerization." *Journal of Biomedical Materials Research Part A* 106, no. 6 (2018): 1677-1686.

The Challenge of Cancer Precision Medicine

Stock Photos Only

P(AAm-co-MAA) as a Modular Technology for Precision Medicine

Clegg, J. R., Irani, A. S., Ander, E. W., Ludolph, C. M., Venkataraman, A. K., Zhong, J. X., & Peppas, N. A. (2019). Synthetic networks with tunable responsiveness, biodegradation, and molecular recognition for precision medicine applications. *Science advances*, *5*(9), eaax7946.

19 **V**

Biodegradation Kinetics and Analysis

Clegg, J. R., Irani, A. S., Ander, E. W., Ludolph, C. M., Venkataraman, A. K., Zhong, J. X., & Peppas, N. A. (2019). Synthetic networks with tunable responsiveness, biodegradation, and molecular recognition for precision medicine applications. *Science advances*, *5*(9), eaax7946.

QCM-D Analysis of Nanogel Biodegradation

Clegg, JR., Ludolph, CM., Peppas, NA. (2019), QCM-D assay for quantifying the swelling, biodegradation, and protein adsorption of intelligent nanogels. *J Appl Polym Sci*, 48655.

QCM-D Analysis of Nanogel Biodegradation

Clegg, JR., Ludolph, CM., Peppas, NA. (2019), QCM-D assay for quantifying the swelling, biodegradation, and protein adsorption of intelligent nanogels. *J Appl Polym Sci*, 48655.

Synthesis and Characterization of Small Molecule-Modified NPs

Clegg, J. R., Irani, A. S., Ander, E. W., Ludolph, C. M., Venkataraman, A. K., Zhong, J. X., & Peppas, N. A. (2019). Synthetic networks with tunable responsiveness, biodegradation, and molecular recognition for precision medicine applications. *Science advances*, *5*(9), eaax7946.

Impact of Nanogel Modification on Responsive Release of Methylene Blue

Clegg, J. R., Irani, A. S., Ander, E. W., Ludolph, C. M., Venkataraman, A. K., Zhong, J. X., & Peppas, N. A. (2019). Synthetic networks with tunable responsiveness, biodegradation, and molecular recognition for precision medicine applications. *Science advances*, *5*(9), eaax7946.

A High-Throughput Assay for Nanogel Uptake

Clegg, J. R., Irani, A. S., Ander, E. W., Ludolph, C. M., Venkataraman, A. K., Zhong, J. X., & Peppas, N. A. (2019). Synthetic networks with tunable responsiveness, biodegradation, and molecular recognition for precision medicine applications. *Science advances*, *5*(9), eaax7946.

High-Throughput Assay for Cell Internalization of Nanoparticles (Macrophages vs. Colon Cancer (400 μg/mL)

Clegg, J. R., Irani, A. S., Ander, E. W., Ludolph, C. M., Venkataraman, A. K., Zhong, J. X., & Peppas, N. A. (2019). Synthetic networks with tunable responsiveness, biodegradation, and molecular recognition for precision medicine applications. *Science advances*, *5*(9), eaax7946.

Photothermal Therapy: Composite DMOD Nanogels with Gold Nanoparticles

Clegg, J. R., Irani, A. S., Ander, E. W., Ludolph, C. M., Venkataraman, A. K., Zhong, J. X., & Peppas, N. A. (2019). Synthetic networks with tunable responsiveness, biodegradation, and molecular recognition for precision medicine applications. *Science advances*, *5*(9), eaax7946.

Nanogel Bioconjugation: Peptides and Proteins

Clegg, J. R., Irani, A. S., Ander, E. W., Ludolph, C. M., Venkataraman, A. K., Zhong, J. X., & Peppas, N. A. (2019). Synthetic networks with tunable responsiveness, biodegradation, and molecular recognition for precision medicine applications. *Science advances*, *5*(9), eaax7946.

Methods for Peptide Identification – Molecular Docking

Covalent Coupling of Cell Targeting Peptides to P(AAm-co-MAA) Nanogels

Targeting of Colorectal Tumors with a Peptide-Polymer Nanoparticle Conjugate

n = 4-8, $\bar{x} \pm \sigma$, *p<0.05, **p<0.01, ***p<0.001

Question Break

Summary

- We have invented a *new P(MAA-co-AAm) nanogel* platform.
- P(MAA-co-AAm) is modifiable through EDC-catalyzed crosslinking. We have demonstrated how modification with functional small molecules *promoted pH-responsive therapeutic release, enhanced cell uptake, and facilitated photothermal therapy.*
- Peptide modification is *readily tunable* by modulating the mass fraction of free peptide in the modification medium
- *CC-9 targeting peptide* modification increases internalization by colon cancer cells by up to 310%
- Along the way, we developed new QCM-D methods for quantifying the biological behavior of nanogels, as well as a high throughput assay for nanogel uptake by cells. Both new methods will be useful to the nanomedicine field.

Design and Evaluation of Recognitive Biomaterials for Diverse Precision Medicine Applications

Clegg, J.R., Wagner, A.M., Shin, S.R., Hassan, S., Khademhosseini, A. and Peppas, N.A., 2019. Modular fabrication of intelligent material-tissue interfaces for bioinspired and biomimetic devices. *Progress in Materials Science*, p.100589.

Polymeric Recognition Elements as Biosensors

Culver, H.R., Wechsler, M.E. and Peppas, N.A., 2018. Label-free detection of tear biomarkers using hydrogel-coated gold nanoshells in a localized surface plasmon resonance-based biosensor. *ACS nano*, *12*(9), pp.9342-9354.

Modular Scaffolds for Tissue Regeneration

Clegg, J.R., Wechsler, M.E. and Peppas, N.A., 2017. Vision for functionally decorated and molecularly imprinted polymers in regenerative engineering. *Regenerative engineering and translational medicine*, *3*(3), pp.166-175.

Modular Fabrication of Bioinspired Materials: Soft Actuators

Clegg, J.R., Wagner, A.M., Shin, S.R., Hassan, S., Khademhosseini, A. and Peppas, N.A., 2019. Modular fabrication of intelligent material-tissue interfaces for bioinspired and biomimetic devices. *Progress in Materials Science*, p.100589.

37 **X**

Bioinspired Soft Actuators: Bioprinting Smooth Muscle Cells

Clegg, J.R., Wagner, A.M., Shin, S.R., Hassan, S., Khademhosseini, A. and Peppas, N.A., 2019. Modular fabrication of intelligent material-tissue interfaces for bioinspired and biomimetic devices. *Progress in Materials Science*, p.100589.

Summary and Conclusion

Clegg, J.R., Wagner, A.M., Shin, S.R., Hassan, S., Khademhosseini, A. and Peppas, N.A., 2019. Modular fabrication of intelligent material-tissue interfaces for bioinspired and biomimetic devices. *Progress in Materials Science*, p.100589.

Summary and Conclusion

- The thermodynamics of polymer-solvent and polymer-analyte interactions lead to **interesting and useful properties, which can be leveraged for medical applications.**
- Through rational design of intelligent or responsive materials, it is possible to apply new formulations within drug delivery, biosensing, and tissue regeneration, amongst other applications.
- I provided on detailed case study, on applying modular nanogels for **cancer precision medicine.** As you could see, through responsiveness to the environment and recognition of cell receptors, we achieved **cell targeting, tunable biodegradation, and a controlled release of therapeutic agents.**
- It is my hope that responsive materials, and constructs thereof can address unmet healthcare needs in the future.

Acknowledgements:

Email: jclegg@seas.harvard.edu **Twitter: @JohnRClegg**

Project Funding:

The University of Texas at Austin Cockrell School of Engineering UT Austin | Portugal INTERNATIONAL COLLABORATORY FOR EMERCING TECHNOLOGIES, COLAB

Complete our brief survey, we want to hear from you

https://www.questionpro.com/t/AMft0Zgf3Y

