Experimental Testing of Vehicles Community College Course Syllabus

Part 1: Course Information

Course Description

This is a new and unique community college-level course that enhances the automotive engineering curriculum, develops hands-on skills and applied knowledge of students/automotive test technicians in main areas of vehicle experimental testing.

Students will do practical laboratory-based studies on various sensors and data acquisition systems (DAQ), setting up test procedures, wiring up sensors for measurements, conducting experiments, recording experimental data, and analyzing test results. Gaining experience on estimating experimental vehicle characteristics and writing a test report is an important part of the course.

An experimental project based on the testing of a virtual hybrid-electric vehicle with the use of an actual DAQ is included in the course. The lab work and the course project are supplemented by lectures. National Instruments LabVIEW and myRIO, MATLAB/Simulink are in use for laboratory work and course project. The course is designed to meet over a period of 15 weeks, 2 meetings per week, and 1h 30min per meeting.

Student Assessment Material

Lab reports, a course project report, and two quizzes.

References

Listed in course material for each week and provided for the instructor

<u>Handouts</u>

Provided with the course material when needed

Part 2: Course Learning Outcomes (CLOs)

The course learning outcomes are to have students:

- 1. Understand the role and types of experiments in vehicle engineering
- 2. Realize the importance of providing safety during experiments and study major safety instruction
- 3. Set up test procedures, wire sensors, condusct experiments, obtain and analyze experimental data, write a report
- 4. Gain knowledge on major experimental test characteristics and on estimating experimental vehicle characteristics
- 5. Be familiar with some FMVSS and NHTSA test procedures and SAE standards related to the course project
- 6. Understand calibration procedures
- 7. Gain sufficient knowledge on test instruments
- 8. Understand static and dynamic characteristics of signals
- 9. Gain and apply practical knowledge on DAQ for measuring electrical signals and recoerding experimental data
- 10. Gain knowledge on strain gauge designs
- 11. Apply practical skills to conduct experimental studies with strain gauges for measuring forces and torques
- 12. Be familiar with Hall-effect sensors and their vehcile applications

- 13. Gain and apply skills to conduct experiments with Hall-effect sensors in e-motor control systems
- 14. Understand principles of sensors to measure wheel normal reactions
- 15. Gain practical skills to measure wheel normal reactions
- 16. Understand and conduct unique tests to measure off-set of the wheel normal reaction
- 17. Gain knowledge of wheel transducers to measure forces and moments at the wheel axis
- 18. Gain knowledge on acceleration sensors and applications
- 19. Learn and apply knowledge on e-motor and controller tests
- 20. Apply knowledge and skills on wheel transducers to measure data and determine tire rolling radii in the driven and driving modes of operation
- 21. Be familiar with a 4x4 vehicle chassis dynamometer and test procedures
- 22. Set up and conduct experiments on a 4x4 vehicle chassis dynamometer
- 23. Set up a project on experimental estimaiton of wheel rotational velocity of a 4x4 hybrid-electric vehicle

Week	Topics and CLOs	Main Concepts, Terms, Procedures
Week 1	Lecture 1 Safety Instructions for Working in the Laboratory Role of Experiments in Automotive Engineering • 1, 2 Lecture 2	 Experiments in vehicle design process Experimental tests: Laboratory tests and equipment Proving ground tests and main test facilities
	Measurement System: Structure and Components Experiment Test Characteristics • 3, 4	 Variables Parameters Noise Random tests Replication and repetition
Week 2	<u>Lecture 1</u> Calibration • 6	 Static and dynamic calibration Static sensitivity Range Accuracy Precision and bias errors
	Lecture 2 Instruments • 7	 Safety and Electrometer Digital Multi-meter Source-Measure Unit Source-Meter Micro-ohmmeter
Week 3	<u>Lecture 1</u> Instrument Specifications • 7	 Terms and definitions Accuracy Deratings Noise and noise rejection Speed

Part 3: Course Topics, Main Concepts, Terms, Procedures, and Week Roadmap

	Lecture 2 Signals:	•	Inputs/Outputs
	Static and Dynamic Characteristics	•	Signal analysis
	• 3.8		0 5
	Analysis of Experimental Data	•	Types of experimental errors
	• 3.8	•	Sources of errors
	0,0	•	Bias and precision errors
		•	Statistical analysis
		•	Required number of experiments
Week 4	Lecture 1 DAO for manuring electrical signals and	•	DAO concept structure and
Week 4	<u>Lecture 1</u> DAQ for measuring electrical signals and	•	DAQ concept, structure and
	recording experimental data in computer		Components Lessets (Ostrasta
	• 9	•	
		•	Real-time DAQ
	Multiple Choice Quiz #1: Weeks I to 3		
	Lecture 2	•	What is LabVIEW
	NI LabVIEW Fundamentals and Use in DAQ	•	Virtual Instrument
	• 9	•	Front panel toolbar
		•	Block diagram toolbar and block
			diagram
		•	Common data types
		•	Numeric controls and functions
		•	Data flow
Week 5	Lecture 1	•	What is NI myRIO
	NI myRIO Fundamentals and Use in Experiments	•	RT Template VI
	• 9	•	Advanced VIs
		•	Palette
		•	Connecting myRIO to Computer
		•	Start your first project
		•	Testing an accelerometer
		•	Testing LEDs
		•	Frror checking
			Lifer checking
	Locture 2	•	Conoral Commonts
	Test Report Writing and Presentation	•	Types of Reports
			Contents of a Benert
	• 5	•	Contents of a Report
		•	Graphical Presentations
		•	Processing of Reports
		•	Oral Presentation
Week 6	Lecture 1	•	Overview of NHTSA
	Overview of FMVSS and NHTSA Test Procedures	•	Electronic Stability Control
	Related to the Course Project	•	Test Maneuvers
	• 5	•	Rollover Testing
		•	Federal Motor Vehicle Standards
			FMVSS Organization
			FMVSS: Crash Avoidance
			FMVSS: Crashworthiness
			FMVSS: Post-crash
			FMVSS: Other Regulations

	Lecture 2	Overview of SAE Standards and
	Overview of SAE Standards Related to the Course	Topics
	Project.	SAE Vehicle Axis System
	• 5	SAE Classification of Stability Features
		Critical Speed Measurement
		Fuel Economy Testing
Week 7	Session 1	Project manual is provided to students
Week /	Course Project Assignment: "Virtual Experimental	A separate manual is provided for
	Estimation of Wheel Rotational Speeds of a 4v4 Hybrid	instructor (contains solution with
	Electric Vahiele"	graphs)
	• 12 21	Computer models in MATLAB are
	12, 21	provided for project
	Session 2	 Students in teams work on the project
	<u>Jession 2</u> Marking on the Project	with instructor in the lab using the
	• 12.21	with instructor in the lab using the
Maal. 0	• 12, 21	project manual and computer program
week o	Lad 1 Strain Course Designs, Wining and Calibrating Strain	• One manual (two labs) for students
		(with an according to instructor
	Gauges	(with all assessment rubits, the
	• 5, 10	rubrics can be used by instructor for
	Lad 2 Strain Courses for Measuring Foress and Tengues in	developing similar rubrics for other
	Automatica Applications	lads)
	Automotive Applications	
147 1 0	• 3, 11	
Week 9	Lab I II. II. ((• Lab manual (two labs) for students
	Hall-effect sensor concept design and applications for	Lab manual (two labs) for instructor
	measuring wheel rotational speed in traction control	with an assessment rubrics
	systems and anti-lock brake systems	
	• 3, 12, 13	
	$\frac{\text{Lab } 2}{\text{Lab } 1}$	
	Hall-effect sensor concept design and applications for	
	measuring wheel rotational speed in traction control	
	systems and anti-lock brake systems (continuation)	
T47 1	• 3, 12, 13	
Week	Working on the Project (in teams)	Students in teams work on the project with the
10	• 12, 21	instructor in the lab using the manual and
T47 1		computer program from week 7
Week		• Lab manual for students
11	Force Plate Transducer	Lab manual for instructor with
	• 14, 15, 16	answers
		Excel spreadsheet with experimental
		data for students
		• Excel spreadsheet with experimental
		data and solution for instructor
	Lab 2	Lab manual for students
	Acceleration sensor Accelerometers in Automotive	Lab manual for instructor with
	Control	answers
1	• 3, 18	 LabVIEW VIs

Week	Working on the Project (in teams)	Students in teams work on the project with
12		instructor in the lab using the manual and
		computer program from week 7
Week	<u>Lab 1</u>	Lab manual for students
13	A lifting system with control - design	Lab manual for instructor with
	• 19	answers
	Lab 2	LabVIEW VIs
	A lifting system with control – a feedback control and	
	data collection	
T47 1	• 3, 4, 19	
Week	<u>Multiple Choice Quiz #2</u> : Weeks 4 to 13	
14.		• Lab manual for students
	Kistler Wheel Transducer – Design and Measurement of	Lab manual for instructor with
	wheel Forces and Torques	answers
	• 3,4,17,20	Excel spreadsneet with experimental
		• Even structures
		data and solution for instructor
	Lab 2	Lab manual for students
	Virtual Vehicle Test on 4x4 Chassis Dynamometer with	Lab manual for instructor with
	Individual Wheel Control	answers
	• 4x4 Chassis dynamometer design	• Excel spreadsheet with experimental
	• 4x4 Chassis dynamometer operational modes	data for students
	• Test procedure to study the tire rolling radius in	• Excel spreadsheet with experimental
	the driven mode	data and solution for instructor
	Use of Kistler wheel transducer	
	• 21, 22, 17, 23	
Week	Writing Project Report and Presenting Project Outcomes	Students in teams write project report
15	(in teams)	using references and material of Week
	• 3	5, Lecture 2
		Students in teams present their project
		findings in the class