Introduction to Hybrid and Electric Vehicle Engineering BSME Senior Course Syllabus

Course Description

This course presents fundamentals in hybrid electric, hybrid hydraulic and electric vehicle engineering with specific applications to commercial vehicles, including highway and terrain trucks, buses, mining and forestry machinery, farm tractors and construction equipment, combat and tactical military vehicles, unmanned ground vehicles, planet rovers.

The course focuses on mechatronic system and component design of HEV based on the requirements to power flow management, power conversion and thus to vehicle dynamics and energy/fuel efficiency. Mechanical drivetrain engineering problems are considered in conjunction with electric drive design and then mechatronic wheel-electric drive, suspension and locomotion System design are presented. The course discusses design of batteries and energy storages and vehicle power electronics and also introduces plug-in hybrid electric vehicles.

Additionally to regular lectures, the course provides (i) hands-on experience in testing vehicles on the 4x4 vehicle chassis dynamometer with individual wheel control, (ii) laboratory works of hydraulically-controlled systems, (iii) computer workshops on simulating vehicles and wheel-electric drive control and (iv) practical knowledge in testing and controlling dynamics of an electric unmanned ground vehicle.

Number of credits: 2.5cr lectures and 0.5cr labs and computer workshops

Week/	Торіс
Sessions	
Week 1.	1. Hybrid and Electric Vehicles (HEV): History Overview and Modern Applications
Two	1.1. Ground vehicles with mechanical powertrain and reasons for HEV development
Sessions:	1.2. HEV configurations and ground vehicle applications
1h15min	1.3. Advantages and challenges in HEV design
+	1.4. Course objectives
1h15min	
Week 2.	2. Power Flow and Power Management Strategies in HEV
Two	2.1. Mechanical power: generation, storage and transmission to the wheels
Sessions:	2.2. Electric power: generation, storage and conversion to mechanical power
1h15min	2.3. Hydraulic power: generation, storage and conversion to mechanical power
+	
1h15min	2.4. Energy storage/conversion and thermodynamic relations
	2.5. Laboratory Work. FESTO Hydraulic Station: Generation and Conversion of Hydraulic
	Power (Actuation of linear motion)
Week 3.	3. Vehicle Dynamics Fundamentals for HEV Modeling and Computer Simulation
Two	(MATLAB/Simulink)
Sessions:	3.1. Various strategies for improving vehicle energy/fuel efficiency
1h15min	3.2. Vehicle chassis mathematical model in various operation conditions (steady motion,
+	acceleration, regenerating braking, coasting, moving up and down a hill)

Course Topic Outline

1h15min	3.3. Series HE powertrain mathematical model
	3.4. Computer model of the HEV
Week 4.	3. Vehicle Dynamics Fundamentals for HEV Modeling and Computer Simulation
Two	(MATLAB/Simulink) - continuation
Sessions:	3.5. Computer Workshop. Fuel efficiency evaluation of a series HEV in city and high-way
1h15min	cycles: study and analyze two strategies for ICE/Battery power split
+	
1h15min	4. Vehicle Testing Laboratory Works
	4.1. 4x4 Vehicle Chassis Dynamometer: Power Curve Test
	,
Week 5.	4. Vehicle Testing Laboratory Works - continuation
Two	4.2. 4x4 Vehicle Chassis Dynamometer: Programmed Force Test
Sessions:	
1h15min	5. Mechanical Drivetrain Engineering
+	5.1 Driving axle designs and characteristics
1h15min	5.2 Automatic transmission designs and characteristics
1111011111	
Week 6.	5. Mechanical Drivetrain Engineering - continuation
Two	5.3. Planetary gear sets in transmission designs
Sessions:	5.4. Vehicle applications at different modes of operation
1h15min	
+	
1h15min	
Wook 7	6 Electric Drives
	6.1 DC-Brushed and brushless drives: principles of design operation math modeling and
Sossions	control
1615min	Shupt Drives
111211111	 Sories Drives
+ 1 h 1 F m i n	Series Drives
11172111111	Compound Drives
Week 8	6 Electric Drives - continuation
Sessions:	6.2 Thermal analysis of electric drives in various vehicle applications
1h15min	0.2. mermai analysis of electric drives in various venicle applications
1111311111	
1h15min	
Wook 9	7 Wheel Electric Drive, Suspension System Design
Two	7. Wheel-Liectric Drive, Suspension System Design
Socciones	7.1. Gear trains in wheel-electric drives
1615min	י.ב. ואובנוומנו טוווג עצוצוו טו אווצצו-צובנווג עוואצא
TIT2[[]]]	7.2 Suspension design for wheel electric drives
+ 1h15min	7.5. Suspension design for wheel-electric arives
	7 Wheel Electric Drive Guerransies Gusters Design continuit
week 10.	7. wheel-Electric Drive, Suspension System Design - Continuation
	7.4. wheel/ life-terrain interactive dynamics
Sessions:	7.5. Inverse dynamics-based control
1h15min	
+	7.6. <u>Computer Workshop</u> . Inverse dynamics-based control of a tire-surface interactive
1h15min	dynamics (NI LabVIEW)

2

Week 11.	Midterm Examination (one session)
Two	
Sessions:	8. Batteries and Energy Storages
1h15min	8.1. Battery characterization, math modeling and designs
+	8.2. Battery sizing for various vehicle applications
1h15min	
Week 12.	8. Batteries and Energy Storages – continuation
Two	8.3. Battery monitoring and charging control
Sessions:	8.4. Combination of batteries and ultracapacitors
1h15min	8.5. Fuel cells: principles of operation, design, modeling
+	8.6. Fuel cell storage system
1h15min	8.7. Strategy for controlling hybrid fuel cell system
Week 13.	8. Batteries and Energy Storages – continuation
Two	8.8. Flywheel energy storage characterization
Sessions:	8.9. Hydraulic accumulator characterization
1h15min	
+	8.10. Laboratory Work. FESTO Hydraulic Station: Control development and implementation
1h15min	for a three-way spool valve
Week 14.	9. Power Electronics in Hybrid Electric Vehicles
Two	9.1. Rectifiers
Sessions:	9.2. Buck convertor
1h15min	9.3. Voltage source inverter
+	9.4. Current source inverter
1h15min	9.5. DC-DC convertor
	10. Plug-in Hybrid Electric Vehicles
	10.1. PEV configurations
	10.2. Power management problems
	10.3. Component sizing
Week 15.	11. Electric Unmanned Ground Vehicle: Computer Modeling and Physical Tests
Two	11.1. Autonomous wheel power management for vehicle dynamics control
Sessions:	
1h15min	11.2. UGV tests
+	
1h15min	