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Abstract: Involuntary human hand motions, or tremors, are normally regarded as a non-stationary 
process. Due to its nonlinear and non-stationary nature, we need the amplitude and frequency 
information of a tremor at a specified time for accurate and real-time suppression.  Research to date only 
approximates tremor as stationary processes and predominant methods such as Fourier Transform used 
to analyze tremor signals completely lose time resolution, therefore, loosing accuracy of tremor 
treatments.  Our research uses a new mathematical method called Empirical Mode Decomposition 
(EMD) to analyze tremor signals.  In general, EMD is a time-frequency analysis method that is capable 
of extracting amplitude and frequency information of a signal at a given time incident.  Because of this, 
the severity and frequency range of tremors can be identified; hence treatment priority can be 
determined.  Since this method can be implemented in a small-sized, low-power, fast processing Digital 
Signal Processor (DSP), low-cost and practical detector can be developed. 
 
In this paper, we present our research results using EMD and Hilbert-Huang Transform (HHT).  The 
EMD is modified by adaptively changing its stopping criteria and therefore more accurately extract a 
tremor signal’s amplitude, frequency, and time information.  The results are expected to be helpful for 
real-time tremor detection and suppression.   
 
 

I.  Introduction 
 
Tremor is the most common movement disorder and manifests as involuntary, rhythmic, oscillatory 
movements produced by reciprocally innervated antagonist muscles.  Most often, the hand and forearm 
are involved.  The bulk of research has focused on scientific understanding, specific diagnosis, 
pharmacologic and surgical therapies.  Treatment of tremor remains symptomatic and many options 
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have side effects and inherent risks.  A number of mechanical means for restoring functionality to 
tremulous forearms and hands have been developed, though no device is yet generally available.  While 
available treatments help many, many others still experience distressing and disabling tremor [1], [2]. 
Most recent approaches approximate tremors as stationary processes, when they are nonlinear, non-
stationary in nature.  The conventional Fourier Transform used to analyze tremor signals reveals 
frequency content in a tremor signal.  However, because the transform averages the signal over time, it 
completely loses time resolution and therefore loosing real-time treatments of tremors.  An example will 
be given in the later section of this paper. 
 
A recent DSP approach models tremors as AR(3) (third-order Auto-Regressive) processes, and an linear 
predictor is developed for adaptive processing of tremor signals [3].  Though the results based on the 
Levinson-Durbin (LD) algorithm show faster convergence than LMS (Least Mean Square) and RLS 
(Recursive Least Squares) algorithms, it does not detect amplitude and frequency range of a tremor at a 
specific time.  In addition, no effort to date specifically addresses tremors in different frequency bands, 
though it has been shown that different kinds of tremor have different characteristics that range from 3 
to 15 Hz [4], [5].  
 
Due to its nonlinear and non-stationary nature, accurate suppression of tremor demands knowledge of its 
amplitude and frequency at any given time incident.  In this research effort, the latest mathematical 
method called Empirical Mode Decomposition is employed to extract tremor amplitudes and frequencies 
at any time incident, hence uniquely determines treatment priority at that time and consequently 
significantly improves treatment quality.  This method provides great potentials of characterizing the 
levels of severity and helps locate tremors in different frequency bands.  Because this method can be 
implemented in a small-sized, low cost Digital Signal Processor, a low-profile, wearable electro-
mechanical system to detect and suppress tremor can be developed as a potentially effective, safer, less 
expensive treatment option [6].  In the results presented in [6], the stopping criteria for EMD were fixed, 
and therefore, optimal results may or may not be obtained depending on the nature of the tremor signals. 
Further research was conducted to adaptively adjusting the stopping criteria for this algorithm, and more 
accurate results can be obtained and are presented in this paper. 
 
Tremor signals are time series.  For any arbitrary time series x(t) an analytic function Z(t) can be 
constructed as 

)()()( tjxtxtZ h                       (1) 

 
where xh(t) is the Hilbert Transform of x(t).  In order to extract the instantaneous bandwidth and 
instantaneous frequency information of the signal, the analytic signal is alternatively expressed as 
 

)()()( tjetatZ                    (2) 
 

where )(ta  is the instantaneous amplitude and )(t is the instantaneous phase of the analytic signal.  The 
instantaneous bandwidth and instantaneous frequency of the analytic signal can be obtained by 
equations (3) and (4), respectively: 
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In the case of hand tremors, these parameters provide crucial information that helps tremor suppression. 
However, due to its nonlinear, nonstationary nature, instantaneous information of tremor signals may not 
be extracted accurately or on a real-time basis.  Empirical Mode Decomposition (EMD) provides a 
powerful means of decomposing nonlinear, nonstationary signals into the sum of a series of stationary 
signals (AM-FM signals) and hence makes real-time tremor detection possible. 
 

 
III.  Empirical Mode Decomposition and Hilbert-Huang Transform 

 
Empirical Mode Decomposition was first proposed by N. E. Huang in 1998 [7].  The basic concept of 
EMD is to identify proper time scales that reveal physical characteristics of the signal, and then 
decompose the signal into modes intrinsic to the function.  These modes are referred to as Intrinsic 
Mode Functions (IMF).  IMFs are signals satisfying the following conditions: 
 

1) in the whole dataset, the number of extrema and the number of zero crossings must 
either be equal or differ at most by one, 

2) at any point, the mean value of the envelope defined by local maxima and the 
envelope defined by the local minima is zero. 

 
The first condition is similar to the traditional narrow band requirements for a stationary Gaussian 
process.  The second condition is new; its locality is necessary so that the instantaneous frequencies will 
not have unwanted fluctuations induced by asymmetric waveforms.  An IMF is not limited as a sinusoid 
in the classical sense (such as in Fourier Transforms), it can be an amplitude and frequency modulated 
signal and, can even be a non-stationary signal.  This method enables us to eliminate the drawback of a 
traditional time-domain to frequency-domain transformation where frequency contents are observed by 
sacrificing time resolution.  Instead, IMFs provide amplitude and frequency information of a signal at 
any given time. 
 
Adaptive EMD Procedures: EMD is an iterative or “sifting” process.  This process is described below 
and illustrated in figure 1. 
 

1) Upper and lower envelopes of the input signal hx(t) are constructed from the local 
maxima and minima points, respectively, using the cubic spline function. 

2) The signal obtained by computing the mean mi of the envelopes is subtracted from the 
signal hx(t) to obtain a new signal hi(t). 

3) Determine if hi(t) is an IMF using the criteria described above. 
4) If hi(t) is an IMF, it is subtracted from the original signal hx(t), and the resulting new 

signal hx(t) goes through the above procedures until another IMF is obtained. 
5) When the last IMF is obtained, it is checked to determine if this IMF is in the tremor 

frequency band (3 – 15 Hz).  If not, the algorithm adaptively adjusts the stopping 
criteria until the in-band IMF representing a tremor is detected. 

 
The stopping criteria consists of several important parameters including the absolute amplitude of the 
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remaining signal, the mean value of the envelope, the cross-correlation coefficient between the 
remaining signal and the original signal, and the Standard Deviation (SD) between two consecutive 
results in the sifting process. SD can be expressed by 
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Our simulation results have shown that reasonable values for SD are between 0.25 – 0.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 1: EMD Process 

 
As shown in figure 1, the stopping parameters are adjusted adaptively based on the quality of the 
extracted IMFs.  The main quality measures of an IMF include the amplitude (to determine the severity 
of a tremor) and the frequency range of the IMF (to determine if the IMF is in the desired detection 
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frequency band of 3 – 15 Hz).  It is worth noting that the extracted IMFs may not be single frequency 
components, instead, they may be amplitude-frequency modulated signals.  Determining the exact 
frequency of the signal is impossible.  Whether or not the IMF is in the desired frequency band is 
determined by counting the number of maxima and minima for a known detection time period. 
Hilbert-Huang Transform (HHT): Suppose we obtain N IMFs through the above EMD process.  Let zi(t) 
be an analytic function constructed with the ith IMF.  From (2), zi(t) can be expressed as 
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and the original signal x(t) can be expressed as a linear combination of the real parts of zi(t) and a 
residue term rn, as in 
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The residue term rn can be used to indicate the trend of the signal.  Equation (7) enables us to represent 
amplitude as a function of frequency and time.  The frequency-time distribution of the amplitudes is 
designated as the Hilbert spectrum H(ω, t) and can be contoured on a frequency-time plane.  To obtain a 
measure of total amplitude (or energy) contribution from each frequency, the marginal spectrum is 
defined as 


T

dttHh
0

),()(                           (8) 

Instantaneous Energy (IE) is defined as  
 




dtHtIE ),()( 2                 (9) 

 
and can be used to check the energy fluctuations.  The following is a classical example that shows how 
this algorithm works.  Although the process is not non-stationary, the example illustrates the basic 
concepts of EMD.  Suppose we have a signal x(t) consisting of a sum of sinusoids: 
 

x(t) = 0.3 cos(2π3t) + 0.5 cos(2π5t) + 0.7 cos(2π8t) + cos(2π12t)             (10)  
 
The signal is chosen as it contains various frequencies within the tremor signal frequency band.  The 
goal of this experiment is to test whether the amplitude and frequency contents of the signal can be 
accurately extracted by the method proposed.  Figure 2 shows the extracted IMFs, and figure 3 shows 
the HHT spectrum.  As expected, the information of interest was obtained with extreme accuracy.   
 
Figure 3 shows the amplitude of each IMF contoured on the time-frequency plane.  As can be observed 
from this figure, all frequency contents (12 Hz, 8 Hz, 5 Hz, and 3 Hz) were extracted by the EMD 
algorithm.  The amplitude of each frequency component can be determined by comparing with the color 
bar.  This simulation indicates that at each point of time of interest, the frequency contents and their 
respective amplitudes can be determined and hence, this makes it possible for real-time suppression of 
hand tremors. 

 



       

Volume 10 No. 2  ISSN# 1523-9926 
 http://technologyinterface.nmsu.edu/Winter09/ 

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

(a) IMF1 - the 12 Hz component

 

 

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

(b) IMF2 - the 8Hz component

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

(c) IMF3 - the 5Hz component
0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

(d) IMF4 - the 3 Hz component  
Figure 2: The IMFs of equation (10) 
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Figure 3: The HHT spectrum of the IMFs 

 
 

IV.  TEST PLATFORM AND DATA COLLECTION 
 
The test-bed consists of three major subsystems: a hand tremor simulator, a sensor network interface, 
and a data acquisition device.  The simulator generates simulated human hand tremors by composite 
movements of hand and arm, and detected by a 3-axis accelerometer sensor network.  Data is collected 
via a LabView USB DAQ device.  Each subsystem will be explained in the following sections. 
 
A. Hand Tremor Simulator 
 
Figure 4 shows the hand tremor simulator. This device was constructed using an arm and a hand from a 
military training dummy.  Solenoids were used to move the hand and the arm at low frequencies. 
Tremor motion in the arm was simulated using a push-type solenoid attached near the wrist.  Rotational 
tremer motion in the hand was simulated by attaching a ball bearing assembly between the hand and the 
wrist, allowing smooth motion for the hand to pivot.  This assembly was attached to the forearm and 
another push-type solenoid.  This allowed the wrist to pivot from side to side to simulate a hand shaking 
during a tremor.  The final assembly allows a realistic simulation of tremors by moving the arm up-and-
down and the hand sideways simultaneously at different frequencies.  
 
B. Detection and Data Acquisition 
 
Signal detection was accomplished using an ADXL330 3-axis accelerometer network.  As shown in 
figure 4, three accelerometers were used, one on the middle finger, one on the hand, and one on the 
forearm, respectively.  Because of involuntary vibrations, the movements on the middle finger best 
depict the nature of a tremor signal which in most cases is a non-stationary process.  The measured 
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results are the time-series of acceleration on X, Y, and Z directions and filtered with 50 Hz low pass 
filters on each direction.  The acceleration can then be translated into distances travelled that represent 
the amplitude of the tremor signals.  The tremors are sampled at 200 samples/sec. Total 6000 samples 
were acquired for one complete test cycle of 30 seconds.  Data were collected via a designed LabView 
Virtual Instrument (VI) user interface and an NI-USB 6008 DAQ device. 
 

 
 

Figure 4: Human Hand Tremor Simulation Test-bed 
 
 

V.  RESULTS 
 

This section provides two examples of applying the proposed method for tremor detection.  The data 
used were collected directly from the aforementioned test platform.  The first example used a single 
frequency to move the arm and the aim was to demonstrate the superiority of the EMD to the traditional 
Fourier transform.  The second example used a composite signal to drive the arm and the hand 
simultaneously, and the purpose was to show the results similar to a real-world situation. 
 
In the first example, a 6 Hz signal was used to move the arm.  It was expected that the sensors would 
detect 6 Hz signals in all directions.  Sensor A, B, and C represent sensors located on the hand, arm, and 
the middle finger, respectively.  Figure 5 shows the original data collected as AX, BX, and CY, where 
the first letter indicates the sensor, and the second letter indicates the direction of movement (e.g., AX 
represents data from sensor A along the X direction). 
 
As shown in figure 6, Fourier analysis revealed the expected frequency contents in all directions.  It can 
be observed that 6 Hz signal is dominant in all directions and locations, along with its higher ordered 
harmonics.  It can also be observed that the data collected from sensor B (arm) shows clearly the 2nd and 
the 3rd order harmonics, sensor A (hand) shows a clear 2nd order harmonic, and sensor C (middle finger) 
mainly shows the fundamental frequency at 6 Hz.  However, from Fourier analysis, one can only 
observe the frequency contents and their respective amplitude, no information is available as to when the 
frequencies occurred.  This is due to the very nature of Fourier analysis in that the information is 
averaged over time. 
 
Figure 7 shows the IMFs obtained from the EMD of the AX, BX, and CY signals.  As can be observed 
from these plots, more detailed information of the motion was provided.  Each subplot shows an average 
frequency of 6 Hz, and amplitude variation with time is clearly observed.  IMFs can be viewed as AM-
FM modulated signals.  Intuitively, tremor signals are not expected to be composed of single-frequency 
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fixed-amplitude components.  Therefore, these EMD results intuitively better explain the nature of any 
tremor signal.  
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Figure 5: Original data collected from AX, BX, and CY with 6Hz driving signal 
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Figure 6: Fourier analysis of AX, BX, and CY signals 
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Figure 7: IMFs for AX, BX, and CY signals 

 
Figure 8 shows the HHT spectrum of the above signals.  As can be seen in the plots, the amplitudes are 
displayed as functions of time and frequency.  From these plots, one can easily find the amplitude and 
frequency of the tremor at a certain time of interest.  For example, the subplot in the middle shows the 
HHT spectrum of the data collected by sensor B in the X direction.  This subplot shows an average 
frequency over time is around 6 Hz, but the signal does cover a frequency band from 4.5 – 7.5 Hz or so. 
In addition, the subplot shows the time a specific frequency occurs.  It can be seen from this subplot that 
during the 1.8 to 2.2 s time interval, there was no 6 Hz signal present at sensor B in the X direction. 
Moreover, the amplitudes of the signals are contoured on the time-frequency plane, which makes it 
possible for researchers to investigate the magnitude of a certain frequency at a specific time. The red 
and blue colors in the first and the third subplots demonstrate that the higher frequency contents have 
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amplitudes that vary widely in time.  These results are consistent with those obtained from the Fourier 
analysis shown above.  Unlike Fourier analysis where time resolution is completely lost, EMD method 
preserves time information of the tremors. 
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Figure 8: HHT spectrum of AX, BX, and CY signals 
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Figure 9: Collected data from sensors A, B, and C, all along Z-direction 

 
In the second example, a 4 Hz signal was used to move the arm, and a 6 Hz signal was used to move the 
hand.  Due to similarities of data in the x, y, and z directions, only tremor signals in the z-direction from 
each sensor are presented in figure 9.  Figures 10-12 show IMFs and the Hilbert spectrum of each data 
set.  Exact frequencies at 4 Hz and 6 Hz are not expected due to the complex nature of movements and 
signal modulation property.  One needs to be careful when interpreting the results.  IMFs are not single 
frequency signals, rather, they are AM-FM modulated signals reflecting the amplitude and the frequency 
at a given time point.  The Hilbert spectral plot contours the amplitude on a time and frequency plane, 
with the x-axis being the time axis and the y-axis being the frequency axis.  The amplitude is presented 
with color indicating the magnitude on the color bar.  The time-frequency plane plots provide 
information on the frequency of the signal over a certain time period.  Amplitudes provide information 
on the magnitudes of predominant tremor signals that need to be suppressed and hence help decide 
treatment priority. 
 
As can be observed from figure 10, there are three IMFs associated with the data collected along the z-
direction for the sensor mounted on the middle finger.  These IMFs are AM-FM modulated signals with 
frequencies spanning over the 4-10 Hz range, and amplitudes from 0.02 to 0.1 (normalized).  
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The last IMF has an average frequency of around 6 Hz, which is the fundamental frequency used to 
move the hand.  Similar frequency ranges can be observed on the signal collected from the sensor 
mounted on the arm, as shown in figure 11.  It is interesting to observe the last IMF extracted from the 
data collected from the sensor mounted on the hand.  It shows an average frequency of about 4 Hz, 
which is the fundamental frequency to move the arm.  Because the sensor is mounted close to the 
solenoid that moves the arm, the result showed expected detection accuracy. 
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Figures 10-12:  IMFs and HHT Spectrum 

 
 

VI.  Conclusion 
 
This paper showed our results of analyzing human hand tremor signals using the EMD method 
combined with the HHT.  The novelty of using this method is the identification of magnitude of a tremor 
signal on a time-frequency plane.  The increased time resolution of this analysis enables the treatment of 
tremor within a much shorter time interval, and therefore, provides the possibility of real-time 
suppression.  Further investigation relies on a simultaneous multi-dimensional detection of tremor in all 
directions and a suppression mechanism based on the detected IMFs. 
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